
www.manaraa.com

 I

Building Boundary Resources for

Enterprise Software Platforms

Factors Affecting the Fit of a Software Enterprise Platform’s Boundary

Resources in Implementation-level Contexts in India and Tanzania

Kristine Jevne Berge

Master Thesis submitted for the degree of
 Master of Informatics: Programming and System Architecture

60 credits

Department of Informatics
Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Spring / 2020

www.manaraa.com

 II

www.manaraa.com

 III

Building Boundary Resources for Enterprise

Software Platforms

Factors Affecting the Fit of a Software Enterprise Platform’s Boundary

Resources in Implementation-level Contexts in India and Tanzania

Kristine Jevne Berge

2020

www.manaraa.com

 IV

© Kristine Jevne Berge

2020

Building Boundary Resources for Enterprise Software Platforms

http://www.duo.uio.no/

www.manaraa.com

 V

Abstract
This thesis investigates the introduction of an enterprise software platforms new boundary

resources in an implementation-level context. More specifically, it focuses on how these new

boundary resources, aimed at strengthening the development of custom applications, can fit in

two organizations specialized in implementing the enterprise software DHIS2 and their

practices in app development, and what the challenges are.

Many enterprise software vendors have utilized the platform strategy and “opened” their

technology to third parties. The platforms layered architecture and boundary resources

facilitate for third party complementors, and thus to provide the enterprise software with more

flexibility to address the challenges of misfits between the enterprise software and use-

specific context.

In a two-year case study, three contexts were investigated; the core team, i.e. the enterprise

vendor in Oslo, and two implementation-specialist groups located in Noida, India, and in Dar

es Salaam, Tanzania. The core team provided insight into the resources they made and why,

and the implementation-specialist groups gave insight into their implementation practices and

challenges, with a particular focus on app development.

The empirical findings of this thesis show custom app development is found to be a

challenging and time-intensive task for the two implementation-specialist groups, and that the

two groups have developed many resources for themselves to ease some of the challenges.

New boundary resources made by the core team is aimed at reducing some of this cost and

make app development an easier task. However, there are found to be several challenges

related to the fit of boundary resources. The analysis shows that the fit of boundary resources

needs to be seen in a socio-technical perspective, as the fit must be seen in relation to

technologies used in implementations and the implementation-level contexts’ capacity and

existing practices. To understand and elaborate this, the concepts of local design

infrastructures and global design infrastructure is been proposed to describe the dynamics

between the implementation-specialist groups and the core team, and their various co-existing

structures, resources, practices, and activities.

Keywords: Enterprise software, enterprise software platform, boundary resources, self-sourcing, design

infrastructures, global design infrastructures, local design infrastructures.

www.manaraa.com

 VI

Acknowledgments

I am extremely grateful to my supervisor Magnus Li for his unwavering guidance and support

throughout the last two years. I also want to thank you for the many interesting discussions,

constructive criticism, and advice that have made this thesis possible. I am thankful to the

HISP group at the University of Oslo, for all their help and support. I would also like to

express my deepest appreciation to my fellow researchers Rebekka, Elisabeth, Fredrik, and

Terje, for our many interesting discussions, helpful advice, and most importantly; your

companionship during our long stays in India. I would like to extend my sincere thanks to

HISP India, HISP Tanzania, and the DHIS2 Core development team that has participated in

the project and made considerable contributions. A special thanks goes to HISP India for

including us and allowing us to stay for such a long time. I also gratefully acknowledge the

assistance of the DHIS2 Design Lab for the many interesting discussions and insights.

Finally, I would like to thank family, friends, Emilie, and Sindre for unparalleled support and

encouragement throughout the process.

Kristine Jevne Berge

University of Oslo

June 2020

www.manaraa.com

 VII

Table of Content

Abstract ... V

Acknowledgments .. VI

Table of Content .. VII

List of Figures ... X

List of Tables ... XI

1. Introduction ... 1

1.1 Motivation .. 3

1.2 Research Question .. 4

1.3 Chapter Summary ... 5

Chapter 2: Background .. 5
Chapter 3: Related literature ... 5
Chapter 4: Methodology .. 5
Chapter 5: Findings .. 6
Chapter 6: Analysis .. 6
Chapter 7: Discussion ... 6
Chapter 8: Conclusion .. 6

2. Background .. 7

2.1 HISP Project and DHIS2 ... 7

2.2 The DHIS2 Design Lab .. 8

2.3 HISP India ... 9

2.4 Alpha Consulting ... 9

2.5 HISP Tanzania ... 10

2.1 Application Development Frameworks ... 10

2.2 DHIS2 Newly Developed App Resources .. 10

3. Related Literature .. 12

3.1 Generic Enterprise Software ... 12

www.manaraa.com

 VIII

3.1.1 Generic Enterprise Software Platform ... 13
3.1.2 Platform Architecture .. 13
3.1.3 Boundary resources ... 15
3.1.4 Knowledge boundaries .. 17

3.2 Enterprise Software Platforms as Design infrastructures ... 18

3.2.1 Generic-level Design and Implementation-level Design .. 18

4. Methodology .. 20

4.1 The Paradigm and Methodology ... 20

4.2 The Research .. 23

4.2.1 Core team .. 25
4.2.2 HIPS India ... 26
4.2.3 HISP Tanzania .. 33

4.3 Data Analysis .. 35

5. Findings .. 38

5.1 DHIS2 resources to support Implementation-level design ... 38

5.2 Practices of App Development during Implementation-level design 40

5.2.1 HISP India ... 40
5.2.2 HISP Tanzania .. 44

5.3 Local Resources ... 47

5.3.1 Local Resources at HISP India .. 48
5.3.1 Local Resources at HISP Tanzania .. 49
5.3.2 Summary of Local Resources ... 52

5.4 Challenges with App Development .. 53

5.5 Core Developers Work to Strengthen the Design Infrastructure around App

Development .. 56

5.5.1 The DHIS2 Design System .. 56
5.5.1 The DHIS2 App platform .. 59

6. Analysis .. 62

6.1 How the New Resources Fit the Practices and Challenges .. 62
6.1.1 Benefits for the Implementation-specialist Groups .. 62
6.1.2 Challenges for the Implementation-specialist Groups .. 63
6.1.3 Summary of Analysis ... 67

www.manaraa.com

 IX

7. Discussion .. 69

7.1 Enterprise Software and Boundary Resources as a Design Infrastructure 71

7.2 Challenges of the Boundary Resources’ fit with the Local Design Infrastructure 73

7.2.1 Fit Related to Capacity ... 73
7.2.2 Fit Related to Structure ... 75

7.3 Contributions .. 78

7.4 Limitations .. 78

8. Conclusion .. 80

9. References .. 83

www.manaraa.com

 X

List of Figures
FIGURE 1: DHIS2 ARCHITECTURE (BRAA & SAHAY, 2017). ... 8
FIGURE 2: PLATFORM ARCHITECTURE, BASED ON ROLAND ET AL.'S FIGURE (2017, P. 25) .. 14
FIGURE 3: TIMELINE OF EVENTS IN THE PROJECT. .. 24
FIGURE 4: CONTEXTUAL INTERVIEW OF END-USER AT A HOSPITAL FACILITY IN UTTAR PRADESH. ... 28
FIGURE 5: WORKSHOP WITH HISP INDIA, IN NOIDA, INDIA. ... 29
FIGURE 6: THE RECORD-HIGH AIR POLLUTION IN INDIA HAD AN IMPACT ON US, OUR RESEARCH AS WELL AS THE HISP INDIA TEAM. ... 33
FIGURE 7: GROUP DISCUSSIONS WITH THE DEVELOPERS AT HISP TANZANIA. .. 35
FIGURE 8: ANALYTICAL PROCESS FOR THE RESEARCH, BASED ON HERMENEUTICS. .. 37
FIGURE 9: PROCESS OF HOW DEVELOPERS AT HISP INDIA CREATE CUSTOM APPLICATIONS. ... 43
FIGURE 10: APPLICATIONS CREATED BY THE HISP TANZANIA DEVELOPERS PUBLISHED ON THE DHIS2 ONLINE "STORE". 46
FIGURE 11: ONE OF THE APPLICATIONS DEVELOPED BY HISP INDIA. ... 49
FIGURE 12: ILLUSTRATION OF THE TWO PROCESSES IN WHICH NEW COMPONENTS WERE CREATED BY THE HISP TANZANIA DEVELOPERS.

 ... 50
FIGURE 13: HISP TANZANIA'S SEED APP ... 51
FIGURE 14: SOME OF THE COMPONENTS IN THE FIRST VERSION OF THE DHIS2 UI LIBRARY. .. 57
FIGURE 15: USAGE OF THE DIFFERENT TYPES OF BUTTONS IN THE DHIS2 DESIGN SYSTEM. ... 58
FIGURE 16: ILLUSTRATES STRUCTURES PROVIDED BY THE APP PLATFORM AND THE APPLICATIONS “SECRET SAUCE”. BASED ON A FIGURE

PROVIDED BY THE CORE DEVELOPERS. .. 60
FIGURE 17: EVOLUTION OF DHIS2 DESIGN SYSTEM. .. 61
FIGURE 19: DYNAMICS BETWEEN THE GLOBAL AND LOCAL DESIGN INFRASTRUCTURES. ... 72
FIGURE 18: RELATION BETWEEN THE GLOBAL DESIGN INFRASTRUCTURE AND THE LOCAL DESIGN INFRASTRUCTURE. 73

www.manaraa.com

 XI

List of Tables
TABLE 1: ORDER OF EVENTS AND DATA COLLECTION METHODS USED. ... 24
TABLE 2: SUMMARY OF DATA COLLECTION METHODS USED IN VARIOUS CONTEXTS. ... 25
TABLE 3: INTERVIEWS AND WORKSHOPS (VERY INFORMAL INTERVIEWS NOT INCLUDED) CONDUCTED DURING THE TWO VISITS TO INDIA.

 ... 29
TABLE 4: RESOURCES UTILIZED BY THE TWO IMPLEMENTATION-SPECIALIST GROUPS IN CUSTOM APP DEVELOPMENT. 53
TABLE 5: CHALLENGES WITH THE NEW RESOURCES' FIT WITH THE IMPLEMENTATION-SPECIALIST GROUPS. 68
TABLE 6: CHALLENGES THAT AFFECT THE FIT OF NEW BOUNDARY RESOURCES AT THE IMPLEMENTATION-LEVEL. 70
TABLE 7: REASONS FOR SELF-SOURCING, AND SOURCES OF SELF-SOURCING FOUND IN THE IMPLEMENTATION-SPECIALIST GROUPS. ... 77

www.manaraa.com

 1

1. Introduction
Based on qualitative research conducted over the past 2 years, this thesis focuses on resources

and tools developed to support the implementation of a generic “packaged” enterprise

software that has a broad range of uses.

Enterprise software is software used to satisfy needs of an organization. Generic “packaged”

enterprise software solutions have become increasingly more popular to use within

organizations, as they are often cheaper than custom solutions (Dean et al., 2002; Soh & Sia,

2008). Custom software is designed to fit a specific organization’s established practices and

needs, whereas generic enterprise software aims at serving a multitude of organizations. Thus,

generic enterprise software cannot be too specific to a given context, as it can then become

irrelevant for other organizations (Berente et al., 2019; Li, 2019a). Research has shown that

“pushing organizations to fit into standardized software packages is no easy task; it has led to

many misfit failures” (Gizaw et al., 2017, p. 622), and that there is often a ‘misfit’, or

‘misalignment’, between the generic enterprise software itself and the intended user

organizations’ practices (Sia & Soh, 2007). This is a result of the generic enterprise software

not being designed for the specific context and the end-users are often unwilling to change

their work practices to fit the software. Generic enterprise software packages are therefor

often too generic to be used “out of the box”, and many researchers have argued that generic

enterprise software must to be customized, or adapted, to become a better fit for the specific

context in which it is to be used (Bansler & Havn, 1994; Gizaw et al., 2017). Some have

argued that this adaptation, through design and innovation, should be possible to do when the

software is implemented into specific user organizations (Li & Nielsen, 2019).

Many vendors of generic enterprise software have “opened” their technology to allow for

third parties to contribute and create extensions to the software, a strategy beneficial to

facilitate for and promote innovation (Foerderer et al., 2019). This is known as the platform

strategy where the generic enterprise vendor implements a platform architecture to enable

third parties to complement the software by developing custom applications that extend the

generic enterprise software’s functionality. The platform architecture is coupled with a range

www.manaraa.com

 2

of resources provided by the enterprise software vendors to support and control the efforts of

the complementing parties (Ghazawneh & Henfridsson, 2013). These resources are described

as boundary resources. Even though the platform strategy is increasingly used by enterprise

software vendors, there is limited research on how to support design and innovation during

the implementation of the enterprise software in specific user organizations (Li & Nielsen,

2019).

In many countries, generic enterprise software is an important component in Health

Information Software (HIS). The generic enterprise software package DHIS2 has been

implemented and is used in over 60 countries, and it is the largest Health Management

Information System (HMIS) in the world. DHIS2 was an initiative by the global movement

Health Information Systems Program (HISP). The HISP network consists of several

organizations, which are spread across the globe, working on strengthening health through

HIS. The various HISP organizations in the network are specialized in implementing DHIS2

and can thus be referred to as implementation-specialist groups. The implementation-

specialist groups implement and maintain instances of DHIS2 on behalf of various

governments and organizations. The context in which the implementation-specialist groups

implement DHIS2 will be referred to as the implementation-level context.

The generic enterprise software DHIS2 has provided a platform architecture and a variety of

resources to make it adaptable and become a better fit for the use-specific context. There are

several approaches to adapting DHIS2 enterprise software. The main approach is through the

configuration of the software, which is achieved through changing and setting predefined

options that the software comes with (Dittrich, 2014; Li, 2019b). As DHIS2 is increasingly

being used for other domains besides health, configuration is not always a viable approach.

Therefore, creating custom applications and customization of the software’s core code is not

uncommon. Custom applications are created as extensions to the software. The challenge with

custom applications is that they are associated with significant financial costs related to the

time and competence needed for development and maintenance, compared to the cost of

configuration. At the same time extensions provide high flexibility in design, as the extension

www.manaraa.com

 3

can be made to be exactly to what is needed for the specific context in which the enterprise

software is implemented (Roland et al., 2017).

This thesis is part of the broader ongoing Action Research project which the HISP research

group is conducting. The HISP research aims to gain an understanding of how to better

“support local management of health care delivery and information flows in selected health

facilities, districts, and provinces, and its further spread within and across developing

countries” (Health Information Systems Programme (HISP), n.d.). Within the HISP research

project, the research group “DHIS2 Design lab” focuses on the DHIS2’s software and the

surrounding resources, people, and practices, which is referred to as the software’s design

infrastructure. The lab aims to “strengthening the implementation-level design and innovation

capacity of the design infrastructure so that it better supports designers in locally building the

software that is right for particular contexts of use” (DHIS2 Design Lab, n.d.). In other words,

the lab aims at understanding how tools and resources can facilitate DHIS2 implementations

in various implementation-level contexts, and how DHIS2 can support a variety of needs and

a diverse audience.

As a part of the DHIS2 Design labs research, the focus of this study will be on how the

vendor of DHIS2 build resources to support the development of custom applications, and how

these can be used on the level of implementation. In the empirical case, we follow the

vendor’s development team, and two implementation-specialist groups; HISP India and HISP

Tanzania.

1.1 Motivation

It has been argued that more research is needed on processes in which the software is

implemented into specific user organizations to understand which parts of generic enterprise

software that should be “customizable, and how it can be made easy and efficient, without

interfering with the updatability” (Li & Nielsen, 2019) of the enterprise software. There has

also been a call for more research on the technology itself in the research of the

implementation of enterprise software. Berente et al. (2019) argue that “most of the attention

www.manaraa.com

 4

in these studies focuses on organizational and social dynamics while the role and impact of

technology goes largely untheorized” (p. 898). Research has largely focused on economic

aspects of the platform strategy, rather than on innovation dynamics (de Reuver et al., 2018).

De Reuver et al. (2018) argues that this “strand of research does not facilitate an opening of

the technological black box necessary to understand platform generativity and other

innovation dynamics” (p. 126). Little is known about how to make good boundary resources

for implementation-specialist groups, which are organizations that are neither vendors nor are

they the intended end-user organization. To contribute to filling this gap, I will look at

boundary resources that are aimed at supporting the development of custom applications in an

implementation-level context and investigate how and if these resources can fit into this

context.

1.2 Research Question

The research aims to address how problems at the implementation level, such as the high cost

of developing custom applications, can be approached through the involvement of the

software enterprise platform vendor. The intent is to get a better understanding of how the

software enterprise vendor can provide boundary resources to support implementations of

custom applications, and how these resources fit with the existing application development

practices in the implementation-level context. The research question is as follows;

What affects a platform's boundary resources fit in an implementation-level context?

To answer the research question the objective is to

1) understand the current practices related to how applications currently are developed

for DHIS2 at implementation-level, which provides a basis for the following

objective,

2) investigate the challenges related to implementation-level app development,

3) to analyze (if or) how the new resources developed by the DHIS2 vendor, aimed at

strengthening app development can fit into the process of implementation-level

design, and

4) discuss how this relates to existing research literature.

www.manaraa.com

 5

The empirical data will be based on research from three different contexts; two DHIS2

implementation-specialist groups 1) HISP India, and 2) HISP Tanzania, and 3) the core

development team of DHIS2. The implementation-specialist groups provided insight into the

practices related to the custom development of applications. From the core development team,

insight was gained on how they developed resources aimed at strengthening and promoting

the implementation-level development of custom applications.

1.3 Chapter Summary

Chapter 2: Background

Provides a general background for the project and introduces the HISP project and the DHIS2

software. It will also introduce two implementation-specialist groups HISP India and HISP

Tanzania, as well as one of HIPS India’s clients Alpha Consulting. Additionally, present some

technical background on app development frameworks and the DHIS2 newly developed app

resources.

Chapter 3: Related literature

Introduces literature relevant to understanding 1) Enterprise software platform, and the related

2) platform architecture and 3) resources surrounding the platform, as well as some of the

challenges related to these elements. Further, it elaborates on theoretical concepts that will be

used to analyze and understand the findings, which are related to enterprise software

platforms as design infrastructures, and the related processes of generic-level design and

implementation-level design that takes place within the design infrastructure.

Chapter 4: Methodology

Describes and explains the research methodology, methods, and techniques used in the

research, as well as how the data was collected, as well as presenting the research context and

challenges.

www.manaraa.com

 6

Chapter 5: Findings

Relate to the two first objectives of this thesis, with five main parts: 1) presenting the existing

resources DHIS2 provide to support implementation-level design, 2) the current practices of

app development in these implementation-level contexts, 3) the locally-developed resources

to support app development practices, 4) challenges with app development, and 5) the new

boundary resources provided by the DHIS2 core team aimed at strengthening app

development at implementation-level.

Chapter 6: Analysis

Relates to the third objective of the research. Presents an analysis of how the new boundary

resources can fit with the existing practices and challenges within the implementation-

specialist groups, by looking at the benefits of the new boundary resources, and the challenges

they pose in this context.

Chapter 7: Discussion

Discussion of how the findings and results of the analysis relate to other literature.

Chapter 8: Conclusion

Summary of the main findings and reflects on future work.

www.manaraa.com

 7

2. Background
This chapter will first provide a brief background on the HISP project and the DHIS2

software. Then, the DHIS2 Design Lab will be presented, as this thesis is a part of the

research within the lab. Next, the implementation-specialist group HISP India will be

presented, followed by a brief introduction to one of their clients, Alpha Consulting, whom

we got to visit and interview during our research. After this, another implementation-

specialist group, HISP Tanzania will be introduced. Following this, some frequently used

frameworks in application development will be presented, as this gives us some technical

insight into how applications are made, which will be useful to know when I later investigate

how the boundary resources fit with the implementation-level contexts. Lastly, a brief

introduction of DHIS2’s new resources will be provided.

2.1 HISP Project and DHIS2

Health Information System Program (HISP) defines itself as a global movement aimed at

improving health through strengthening Health Information Systems in Developing countries

(Health Information Systems Programme (HISP), n.d.). HISP has implementation-specialist

groups across the world. All the implementation-specialist groups aim at strengthening HIS,

working together with governments at different levels, as well as global organizations, such as

WHO, UNICEF, and others. At the core of HISP is DHIS2 (District Health Information

System 2), a free and open-source HIS software package. This software is currently used in

about 72 countries (DHIS2 Front Page, n.d.), and HISP contributes through capacity building

and supporting the implementation of DHIS2. The HISP organization located at the

University of Oslo consists of two groups; researchers and the “core team”, that drive the

design, development, and maintenance of the DHIS2 software. Researchers range from master

students to professors, researching the different aspects of DHIS2 in many different countries.

The DHIS2 system’s structure can be divided into several layers, as illustrated in Figure 2 in

Chapter 3. These layers consist of a core, bundled applications, and custom applications

(Roland et. al., 2017, pp. 25-26). The core team consists of thirty fulltime employees, who are

mainly developers.

www.manaraa.com

 8

The DHIS2 generally serves as a data warehouse that can store and access data from various

sources. The data can come from an integration with other systems, such as other HIS

software, web-applications, or mobile reporting. Furthermore, DHIS2 comes with a range of

built-in bundled applications as well as the possibility to integrate with custom applications.

These applications can be used to analyze and visualize the data. The architecture is

illustrated in Figure 1. The core team are also responsible for developing, designing, and

maintaining the bundled applications.

Figure 1: DHIS2 Architecture (Braa & Sahay, 2017).

2.2 The DHIS2 Design Lab

The DHIS2 Design Lab is a part of the HISP research project at the University of Oslo. The

DHIS2 Design Lab aims to explore implementation-level design, and how usability can be

addressed at this level. The lab is led by a Ph.D. candidate and consists of a group of master

students. The idea with the lab is to explore various aspects of how the enterprise software is

designed during implementation and aims at strengthening this process and how resources can

facilitate innovation. My project in connection to the design lab is focused on the newly

www.manaraa.com

 9

developed resources aimed at strengthening the development of extensions, or applications,

for DHIS2.

2.3 HISP India

HISP India is one of the implementation-specialist groups in the global HISP network, whose

office is located in Noida, Uttar Pradesh, India. The company consists of about 40 employees

(HISP India, n.d.-a). The employees can be divided into two groups; technical and public

health. Currently (02.04.2020) six employees in the technical team deal with software

development, server administration, and testing. The public health group, called

implementers, consists of 19 employees who work with, inter alia, requirements analysis,

design, capacity building, system implementation, and documentation (HISP India, n.d.-a).

HISP India is working on several projects across the globe. Their projects range from the

implementation of national or regional HMIS to vertical health programs, such as HIV

monitoring or Antimicrobial Resistance (AMR) monitoring, to other projects that are not

related to health, such as tracking of youth unemployment (HISP India, n.d.-b). Their clients

mainly vary between governments and NGO’s. They mainly work with implementations of

DHIS2, but also do integrations between DHIS2 and other systems. In addition to offering

implementation and maintenance of DHIS2 instances, HISP India also offers academies, in

collaboration with the University of Oslo, for DHIS2 users in the region (HISP India, n.d.-c).

2.4 Alpha Consulting

One of HISP India’s largest contracts is with a non-governmental organization, here referred

to as Alpha Consulting. Alpha Consulting was contracted by the government in the state Uttar

Pradesh (UP) to implement a HIS in the state. Alpha Consulting contracted HISP India to deal

with the technical implementation of the system, and Alpha Consulting would be responsible

for training users and following up on the system. Alpha Consulting’s offices are located in

UP’s capital, Lucknow, which is about 500 kilometers southwest from New Delhi. Uttar

Pradesh is the largest state in India in terms of population, with roughly 200 million

inhabitants. Implementing a HIS for this many people is therefore a quite comprehensive task.

www.manaraa.com

 10

2.5 HISP Tanzania

HISP Tanzania is another implementation-specialist group in the HISP network. The

organization has had been involved in several implementations of DHIS2. In Tanzania, they

have implemented several instances for use within health, but also within a wide range of

other domains such as water, and agriculture, as well as on behalf of international

organizations. They have also been projected to do implementations in other countries such as

with Health Ministries of Kenya, Uganda, Malawi, Zimbabwe, Zambia, and Democratic

Republic of Congo (HISP Tanzania, n.d.).

2.1 Application Development Frameworks

When developing applications in general, it is common to use an app development

framework. There are currently three very popular frameworks/libraries for creating the

frontend of web applications. These frameworks are React, Vue, and Angular (Martin, n.d.).

These frameworks allow the developer to more efficiently create applications with JavaScript,

HTML, and CSS, which are the essential building blocks in web programming. The different

frameworks offer, in essence, the same functionality. However, the structure of which the

programmer has to write code differs from the different frameworks. In other words, to be

able to use all the frameworks, the developer has to learn how to use each and one of them. In

addition to the frameworks, it is also common in web application development to utilize

libraries with premade functionality, UI components, or both. Some libraries are supported by

all three of the frameworks, however, many libraries are only supported by one of them. In

other words, a library imported into a React application cannot necessarily be imported into

an Angular application. The libraries utilized in the applications are often installed and

imported into the application using a package manager.

2.2 DHIS2 Newly Developed App Resources

When the research for this thesis started, the new resources developed by the core team was in

its initial stage. These resources are the DHIS2 Design System and the DHIS2 App platform.

The Design System is a component library consisting of standalone components in DHIS2-

style, as well as design principles and standards for how to use the components. The App

www.manaraa.com

 11

platform is a unified architecture and build, which serves as a sort of a template when starting

on a new application. The new resources will be discussed further in Chapter 5, which will

also elaborate on how the resources evolved throughout the project.

www.manaraa.com

 12

3. Related Literature
The thesis aims to understand what affects platform boundary resources fit in an

implementation-level context. To do so, other research contributions related to the thesis’

research topic and theoretical concepts used in the analysis and discussion, will be presented.

Firstly, the chapter will go through enterprise software and the challenges of providing

flexibility to support various uses, while at the same time provide stability. I will then present

how some enterprise software vendors have addressed the challenges by implementing a

platform architecture, which allows other parties to complement the software to make it a

better fit for the context-specific use. Following, the chapter will elaborate on the research

done on platform architectures, both how the architecture itself is structured as well as the

surrounding people and resources that facilitate and promote new uses for enterprise software

platforms, while at the same time provide stability. Next, the concept of “Design

Infrastructures” will be presented as it is a useful concept to describe all the activities, people,

and technology that surrounds an enterprise software platform. After this, I will conceptualize

two key processes related to the design of generic enterprise software, which happen at

different “levels”; generic-level design and implementation-level design. These will be used

to understand how resources are developed aimed at promoting and supporting customization

and adaption of enterprise software. It will also help us understand the ramification of the

resources in various contexts, and how these resources may fit with the practices of

implementation-level design context.

3.1 Generic Enterprise Software

Generic enterprise software is, as mentioned in the introduction, software which is not

designed for a specific user organization in mind. Organizations are increasingly relying on

the use of enterprise software, rather than in-house development of custom software. This is

mainly due to economic aspects, as the cost of creating and maintaining custom software is

rising (Bansler & Havn, 1994). An enterprise software vendor can not facilitate or account for

all the diverse requirements that various user organizations might need, as the requirements

can be numerous and different organizations can have conflicting requirements (Gizaw et al.,

2017; Pollock et al., 2007). Hence, there is often a misfit between enterprise software

packages and the specific context, practices, and requirements of the user organization (Gizaw

www.manaraa.com

 13

et al., 2017). However, to address the diverse and dynamic requirements, the enterprise

software aims at providing flexibility to facilitate for adaption of the software in the local

context, to become a better fit for the specific requirements. Since enterprise software

facilitate for more local adaption and customization of the software, technology innovation is

increasing as a distributed activity, taking place in networks and ecosystems (Gizaw et al.,

2017). There has been a lot of research on approaches to customizing enterprise software

(Bansler & Havn, 1994; Brehm et al., 2001; Domingos et al., 1997; MacLean et al., 1990),

and it has been suggested that the enterprise software’s architecture is one of the keys to

supporting a large number of techniques to customizing the software (MacLean et al., 1990).

3.1.1 Generic Enterprise Software Platform

To address the challenge of misfits between generic enterprise software and the use-specific

context, many vendors of enterprise software have decided to “open” their technology by

allowing third parties to contribute to the software by creating applications that are connected

to the software. For the vendor, the rationale behind this is to promote innovations and to

support more uses of the software (Foerderer et al., 2019). This is known as the “platform

strategy”, which is increasingly adopted by enterprise software vendors (Foerderer et al.,

2019). Research has mainly focused on two correlated and enabling factors of platforms that

make it possible for third parties to contribute and develop complements for the platform.

These two factors are the platforms layered architecture (Baldwin & Woodard, 2009; Tiwana,

2014), and the boundary resources and boundary spanners, i.e. the people, tools, and

regulations, that facilitate the relationship between the platform vendor and the platform

complementors (Eaton et al., 2015; Ghazawneh & Henfridsson, 2013; Henfridsson &

Bygstad, 2013).

3.1.2 Platform Architecture

The platform architecture is layered, as illustrated in Figure 2. The inner layer consists of a

generic core that provides a generic UI and some core functionality. This layer has low

flexibility in terms of what the user organization can change, but it has high flexibility in

terms of being ready to use for a range of different purposes (Baldwin & Woodard, 2009;

Tiwana, 2014). The outer layer consists of custom applications, or extensions, to the software.

www.manaraa.com

 14

The development of custom applications provides the possibility of high design flexibility

without affecting the generic core and thus does not interfere with updatability.

Figure 2: Platform architecture, based on Roland et al.'s figure (2017, p. 25)

The middle layer binds together the outer and inner layers. This is also the key to

understanding how platform architecture paradoxically can provide both flexibility and

stability (de Reuver et al., 2018; Tilson et al., 2010). The middle layer allows for

implementing organizations to customize the software and other pre-made applications,

through for example configurations. These premade applications can be referred to as

“bundled applications” as they come together with the generic core (Roland et al., 2017). The

middle layer also consists of boundary resources. Boundary resources are tools and

regulations that facilitate the relationship between the platform vendor and third-party

complementors, and allows the complementors to develop custom applications (Eaton et al.,

2015). Platforms can provide a range of boundary resources, such as APIs or Software

Development Kits (SDKs), which allows for third-party applications to be connected to the

platform (Roland et al., 2017). These third-party applications do not intervene with the core’s

code but are created as separate modules, connected to the platform through the platform’s

boundary resources. In other words, the boundary resources enable others to extend the

platform and provide new functionality and features. Hence, applications made by third

parties who utilize the boundary resources the middle layer provides to do so.

www.manaraa.com

 15

By utilizing the architecture of platforms, the vendors of enterprise software can allow third

parties to contribute and participate in the development, which can provide increased

flexibility for the software’s user organizations. The platform strategy also has the benefit of

moving some of the development from within the platform vendor to independent platform

complementors (Foerderer et al., 2019). The architecture supports a community of

complementors who can creatively develop extensions and utilize the platform in unforeseen

ways (Foerderer et al., 2019). Hence, the platform architecture has been argued to promote

innovations (de Reuver et al., 2018; Gawer & Cusumano, 2014). The platforms layered

architecture provides stabilization at one level, while at the same time flexibility by allowing

complementors of the enterprise software platforms to extend the software for a variety of

uses (Baldwin & Woodard, 2009). Thus, the platform architecture can create an

“unprecedented scope for innovation on complimentary products, services, and technologies”

(Gawer & Cusumano, 2014, p. 421). It is argued that competition among platform vendors is

no longer revolving around “how to control the value chain but around attracting generative

activities associated with a platform” (de Reuver et al., 2018, p. 124).

3.1.3 Boundary resources

Platform research has focused on a variety of different aspects related to platform

management and governance (Foerderer et al., 2019; Wareham et al., 2014). Some have

argued that the platform’s boundary resources stability is an important property of software

platforms (Bianco et al., 2014; Robbes & Lungu, 2011). Too big changes in the boundary

resources has shown to have “trickle-down” effects on the complementors, as instability can

lead to higher maintenance work, and thus leading to platform complementors deeming the

software platform undesirable (Bianco et al., 2014; McKenzie, 2013). Others have argued that

platforms pose a paradox, as the platform must be stable to attract complementors, while at

the same time provide flexibility to allow for growth (Baldwin & Woodard, 2009; Tilson et

al., 2010).

It has been claimed that tensions between platform vendors and complementors can arise due

to competition between the two (Baldwin & Woodard, 2009). The boundary resources can

www.manaraa.com

 16

thus be used to by the platform vendor control and regulate the platform to avoid that the

complementors develop applications that compete with what the platform vendors provides or

prevent the complementors from “cloning” the platform to compete directly (Baldwin &

Woodard, 2009). Ghazawneh and Henfridsson (2013) have suggested that the platform

vendors key to balancing generativity and control by the is through the platform’s boundary

resources. They argue that two processes are driving the boundary resource design; 1)

resourcing expands the scope and enhances the diversity of the platform, and 2) securing is

the process in which the platform vendor’s control over the platform is increased (Ghazawneh

& Henfridsson, 2013). They also define the concept of self-resourcing, which is the process in

which third-party complementors develop new boundary resources “as a response to

perceived limitations in existing boundary resources” (Ghazawneh & Henfridsson, 2013, p.

186), and explore how the platform vendors have address undesired and unanticipated self-

resourcing by balancing resourcing and securing of their platform. Their contribution to

understanding platform management through digital innovations, by exploring “boundary

resources as digital technology with the capacity to trigger innovation driven by multiple and

uncoordinated third-party developers” (Ghazawneh & Henfridsson, 2013, p. 187). It has been

pointed out by other researchers that in Ghazawneh and Henfridsson's research, it is “not clear

how boundary resources come into being and exactly how they evolve over time” (Eaton et

al., 2015, p. 220).

It has also been emphasized that Ghazawneh and Henfridsson’s study is taking the privileged

perspective of the platform vendor, who largely designs and controls the boundary resources,

leaving third-party complementors as “passive recipients of these boundary resources” (Eaton

et al., 2015, p. 220). Eaton e. al. (2015) argue that third-party complementors are not merely

passive receivers of boundary resources, but rather they are actively involved in processes of

“distributed tuning”, where the resources are shaped and reshaped by complementors by the

platform vendors. Through the distributed tuning of the boundary resources the actors, both

the platform vendor and the complementors, aim at gaining control to achieve their

respective, differing, goals (Eaton et al., 2015).

www.manaraa.com

 17

Some research has focused on how boundary resources hinder or support development

(Bianco et al., 2014; Foerderer et al., 2019). Bianco et al. (2014) identified several challenges

the platform’s complementors had related to the platform’s boundary resources. They found

challenges with the APIs, SDKs, and its documentation, such as limited use cases and

difficulties getting started using the SDKs due to limited documentation. They also found that

there were supporting factors for the complementors, such as that common API operations

was quite straight forward, and interactions involving both the developers of the boundary

resources and the platform complementors, such as hackathons and live chats (Bianco et al.,

2014).

3.1.4 Knowledge boundaries

Another benefit of platforms and its ability to move some of the development to third-party

complementors is that the complementors often have more insight into the situated context of

use than what the platform vendor has. Von Hippel (2005) points out that bridging the

context-specific information and the generic enterprise software information is challenging,

but that it is necessary to develop software products that are desirable and feasible. Thus,

complementors to the platform must know both the situated context of use as well as about

the software architecture (Roland et al., 2017). However, expanding on the previous research

on boundary resources, Foerderer et al. (2019) demonstrate that “platform strategies

inherently impose ‘knowledge boundaries’ between platform owners and complementors” (p.

129). Furthermore, they argue that most contributions on boundary resources “relate to

understanding how actions and reactions of platform owners and complementors shape

resources at the boundary, rather than what influences gaps in knowledge across the boundary

and how platform owners address these gap” (Foerderer et al., 2019, p. 121). In other words,

it is found that platforms have knowledge boundaries, as complementors must know how to

access and extend the platform functionality (Foerderer et al., 2019; von Hippel & Katz,

2002), which also includes the knowledge needed to be able to utilize the boundary resources

provided. Acquiring platform-specific knowledge has been argued to be “one of the persistent

problems for complementors” (Foerderer et al., 2019, p. 120). If the resources provided by the

platform vendors are not sufficient, the third parties struggle with utilizing the platform.

Foerderer et al. (2019) put forward their main findings, which is that the technical design of

the platform poses knowledge boundaries between platform vendors and its complementors,

www.manaraa.com

 18

to which platform vendors attempt to address the knowledge boundaries by providing

additional boundary resources and through boundary-spanning activities. In relation to their

findings, they argue that future research should investigate further the interplay between

technological characteristics and knowledge boundaries (Foerderer et al., 2019).

3.2 Enterprise Software Platforms as Design infrastructures

To conceptualize all of the surrounding dynamics and resources that enable and support

implementation of Enterprise software platforms, Li and Nielsen put forward a perspective of

Design Infrastructures which “refers to both technical and social resources that may enable

design after the initial design” (2019, p. 5). The design infrastructure consists of the collective

practices as well as the material arrangements that make up the enterprise software platform

and the surrounding socio-technical system. The surrounding socio-technical system consists

of people, documentation, guidelines, channels of communication. The main purpose of the

design infrastructure is to support design and innovations. It also covers all other activities,

such as the design, development, maintenance, and implementation of the enterprise software

(Li & Nielsen, 2019). In an enterprise software platform context, this also means that the

design infrastructure also includes the platform's boundary resources as well. Hence, the

design infrastructure covers broadly, from people and activities to technology and documents.

Based on this definition, it can be argued that an enterprise software platform itself also is a

part of the design infrastructure.

3.2.1 Generic-level Design and Implementation-level Design

Generic-level design and implementation-level design are processes that happen within the

design infrastructure on different levels and with different aims. The processes also feed back

into the design infrastructure. Both generic-level design and implementation-level design are

involved in designing for use, by making artifacts or doing changes to artifacts that are

intended to support end-users in their work (Li & Nielsen, 2019). The main difference being

that implementation-level design is often concerned with a specific context of use with

existing users and practices, whereas generic-level design develops artifacts to support a

general user group or general use area. Additionally, the generic-level design also has

processes that aim at developing artifacts that can be customized, to increase flexibility so that

www.manaraa.com

 19

the enterprise software platform can become a better fit for specific contexts of use. This can

also include more technical features, such as an application programming interface (API) that

allow for external parties to create custom applications for the enterprise software. The

generic-level can also provide documentation and take measures to build capacity on how to

utilize these features (Li & Nielsen, 2019). In other words, generic-level design aim at

developing structures and resources that can strengthen the implementation-level design

processes.

www.manaraa.com

 20

4. Methodology
This chapter will first go through why an interpretive approach was most suited as a paradigm

for the research. Next, the actors in the research context will be presented, followed by why

case study was chosen as a methodology. Lastly, research methods used for data collection in

the different stages of the research will be presented, as well as some ethical considerations

and challenges.

Before the research started, I had already an interest in the new boundary resources being

created for DHIS2, and I wanted to further investigate if and how these resources could be

utilized in the implementation-level design of custom applications. This study is part of an

ongoing, larger Action Research project, where

“the primary goal of the HISP research is to design, implement, and sustain HIS

following a participatory approach to support local management of health care

delivery and information flows in selected health facilities, districts and provinces,

and its further spread within and across developing countries.” (Braa et al., 2004, p.

343).

This thesis aims at contributing to the ongoing project, by investigating the newly developed

boundary resources; the DHIS2 Design System and the DHIS2 App platform. As mentioned

previously, it is commonly known that it can be challenging to adapt enterprise software, and

this is also a known challenge for the implementation-specialist groups when implementing

DHIS2 for different use cases and in different local contexts. This thesis will investigate if

boundary resources developed by generic-level design can fit in an implementation-level

context, and thus be utilized in implementation level design.

4.1 The Paradigm and Methodology

The focus of this study has been a socio-technical system within a network of organizations

and how they work with implementing DHIS2. The overarching aim was to understand the

relationship between global resources and local practices. This will be investigated by looking

at how, and if, the DHIS2’s new resources related to app development can be utilized in the

implementation of DHIS2. To do so, it is first important to get a deeper understanding of how

www.manaraa.com

 21

the implementation process is currently done within implementation-specialist groups. It has

been argued that organizations, such as the implementation-specialist groups, are created by

humans “to serve their ends” (Susman & Evered, 1978, p. 584), they are made up of human

action “in which the means and ends are guided by values” (Susman & Evered, 1978, p. 584).

Organizations are complex social and dynamic entities, and they do not exist without humans

and human interaction. The positivist paradigm “consider scientific knowledge to be

obtainable only from sense data that can be directly experienced and verified between

independent observers” (Susman & Evered, 1978, p. 583), in other words, the phenomenon

studied must be possible to reconstruct and achieve the same outcome, and the result will be

the same regardless of who it is observing it.

As I wanted to understand if and how DHIS2’s newly developed app boundary resources

could fit into the work practices of the organizations HISP India and HISP Tanzania, field

trips were conducted to both locations to collect data for the research. As the research context

is bound by time, and due to the ever-changing nature of organizations, it would not be

possible to perform the same research twice to verify it as the positivist paradigm requires.

Even given the same context and time, other researchers might have observed and interpreted

things differently from what I did. Additionally, due to the exploratory nature of the research

question, the research would not be meaningful to quantify. In essence, a positivist approach

is not well suited, and it would not be able to explain the human actions within organizations,

as it cannot capture the complexities, social dynamics, and the underlying social meanings.

Hence, an interpretive, qualitative research methodology is best suited (Klein & Myers, 1999;

Susman & Evered, 1978; Walsham, 2006). Interpretivism seeks to understand the underlying

meanings, and it permits multiple correct approaches and findings. The interpretivist

paradigm does not seek to find one objective truth but rather seeks to explain something about

a socially constructed reality, in which the findings are mediated by time, context, and the

researcher (Villiers, 2012).

Case study is a popular qualitative methodology within the interpretive paradigm. But there

are also many other qualitative research methods, the most popular besides case study being

ethnographic research, action research, critical research, and grounded theory. Some of the

www.manaraa.com

 22

other types of qualitative research methods were not particularly well fitted for the research,

due to the short time frame of the project. Ethnographic research requires the researcher to do

longitudinal studies to gain an in-depth holistic understanding of the research subject and the

context (Klein & Myers, 1999). Action research is conducted in cycles; diagnosing, action

planning, action taking, evaluating, and specifying learnings (Susman & Evered, 1978). It is

argued that to produce knowledge and practical contributions, the research should aim at

completing multiple research cycles. Thus, following these methods could be difficult to

achieve over a two-year period.

There are several approaches and definitions of case studies. Yazan (2015) discuss the work

of three predominant case study methodologists; Yin, Merriam, and Stake. This research

aligns best with Stake’s work. Yin and Merriam’s perspectives will be briefly presented,

which will also explain why they do not fit this research. Yin’s perspective on the role of the

researcher is that the researcher should “maximize four conditions related to design quality:

construct validity, internal validity, external validity, and reliability.” (Yin, 2002, p. 3,

referenced to in Yazan, 2015, p. 136). To ensure the validity and quality of the data, the

researchers should keep these aspects in mind in every step of the investigatory process.

Merriam suggests the case study should be thoroughly planned and follow a certain process in

designing the research, which includes “conducting literature review, constructing a

theoretical framework, identifying a research problem, crafting and sharpening research

questions, and selecting the sample (purposive sampling)” (Yazan, 2015, p. 141). Due to the

exploratory and interpretive nature of the research question, Yin’s orientation towards

positivism and Merriam’s restrictions in flexibility, do not fit well with this research. In

contrast, Stake argues for a more flexible design, that “allows the researcher to make major

changes even after they proceed from design to research” (Stake, 1995, referenced to in

Yazan, 2015, p. 140). He proposes four characteristics of case studies, which are that they are

holistic, empirical, interpretive, and emphatic (Yazan, 2015). Holistic means that the

phenomenon studied must be seen as part of the whole, in other words; it must be seen in

relation to its contexts. It should be empirical as the researcher should base their study on the

observations from the field. Interpretive in seeking to understand the underlying meanings,

and “see the research as a researcher-subject interaction” (Yazan, 2015, p. 139). Emphatic

means that the researcher should also attempt to reflect upon and understand things from the

www.manaraa.com

 23

research subjects’ point of view (Yazan, 2015). The four characteristics of case study which

Stakes proposes fits well with the research conducted for this thesis.

4.2 The Research

Empirical data provided in this thesis was gathered over two years, from August 2018 to June

2020. I went on two field trips to Noida, India; the first field trip was in January 2019 and

lasted for four weeks, and the second for six weeks and was conducted in October-November

2019. A brief field trip of one week was also conducted in Tanzania in May 2019. A benefit

of the research being part of the ongoing HISP action research and the DHIS2 Design lab was

that this provided me with access to the two implementation-specialist groups and the core

team, due to the existing connections and collaboration between the HISP research group and

the other contexts. Figure 3 shows a timeline of the events, both field trips as well as new

releases from the core team. This context is important to note to better understand what

“state” the Design System and the App platform was in when they were discussed during the

field trips. It also illustrates how rapid new releases and changes were coming from the

DHIS2 core development team, and how much had changed in-between the field trips.

Due to the long stays in India, I gained a more holistic understanding of the organization and

all of its practices, whereas with the core development team and HISP Tanzania I primarily

got to “zoom” in and explore the practices related to the research question. With the core

development team and HISP Tanzania, I mainly had to rely on the data gained through what

they said. I did not get the opportunity to participate and observe the practices in these

contexts’ over a longer period as I did with HISP India. However, much of what they said

could often be strengthened by document analysis, for example by analyzing the software

code and that it coincided with what had been said. Additionally, insight gained at HISP India

also made it easier to understand HISP Tanzania and the core team, as a lot had already been

learned about the DHIS2 software and the HISP organizations.

www.manaraa.com

 24

Figure 3: Timeline of events in the project.

This section will first go through the methods used for gathering data from the various

contexts; the DHIS2 core development team, HISP India, and HISP Tanzania. During all

three field trips, two to India and one to Tanzania, I took notes from interviews, observations,

as well as keeping a diary of what happened every day. Pictures were also used for

documentation. Table 1 illustrates the order of the events, and Table 2 provides a summary of

the data collection methods used in the various contexts, which will be elaborated on in the

following sections.

Table 1: Order of events and data collection methods used.

Period Location Activities

January 2019 India Interviews

Workshops

Participant observation

Document analysis

April 2019 Norway Interviews

May 2019 Tanzania Group interviews and discussions.

August – September

2019

Norway Document analysis

Interviews

October – November

2019

India Workshops

Interviews

www.manaraa.com

 25

December 2019 –

May 2020

Norway Interviews (follow-up questions)

Table 2: Summary of data collection methods used in various contexts.

Core team HISP India HISP Tanzania

• Four interviews/meetings

with Core developers,

• Ongoing communication

and follow-up questions,

through their chatroom,

• University course forum

responses from the core

team, and

• Lectures held by the Core

Developers in a university

course.

• 30-40 very informal and

unstructured interviews,

• 17 more formal interviews

(semi-structured and

contextual),

• 4 workshops focused on

various topics,

• Participant observation

over two trips totaling up

to 10 weeks,

• Document analysis, and

• Photos and Diary.

• Three full-day sessions of

group discussions,

• Document analysis of the

libraries and apps made by

the HISP Tanzania, and

• Diary and photos.

4.2.1 Core team

I had contact with the core development team in Oslo throughout the whole project. Through

the interactions with the core development team, I got a lot of insight into how and why they

were building the resources they did. Feedback from HISP India and HIPS Tanzania was also

shared and discussed with the core team after each of the field trips.

Data Collection Methods

Four formal interviews with core team developers were conducted. The interviews consisted

of one to two developers and me, and in a couple of the interviews my supervisor and another

master student were also participating. These interviews were semi-structured. A short list of

www.manaraa.com

 26

questions was prepared before the interviews and had often derived from learnings in the

field.

A channel in the core team’s chatroom was created to plan together for a university course

where I worked as a teaching assistant and to which the core team was a part of. In the

university course, the students developed applications using the new resources the core team

had developed. The chatroom was also used to easily ask the core developers about some

follow-up questions I had during the research. A couple of the core team developers were

involved in the preparations for the university course, bringing us up to date on their latest

features. This was beneficial for us and them, as they got a large base of users to test their

latest resources, and it was beneficial for us to get their support and knowledge. Two core

team developers also held a lecture each, presenting DHIS2, the Design System, and the App

platform. Some of the core team developers were also in the university course’s online course

forum. In this forum, the students would ask questions or post issues they had regarding the

project, and either other students, teaching assistants, or the core team developers would

answer the posts. During the student app project, this was extremely beneficial for all

involved parties. The core team developers had a better technical insight into DHIS2 and the

new resources than both teaching assistants and other students, and the students' questions and

issues also gave the core team developers a better idea of what users of the new resources

were struggling with, and where more documentation, tutorials, or examples was needed.

4.2.2 HIPS India

Through two long stays in India, a lot was learned about the HISP India organization and its

practices. This was strengthened by the various data collection methods were used. I also

gained a quite in-depth insight into one of HISP India’s biggest projects. This included insight

into the process, who was involved in the projects and various roles of people; ranging from

the client to the HISP India team and down to end-user, details on how communication

flowed; who communicated and what was communicated between the different roles. A lot of

insight was gained into the practices surrounding the development of applications as this was

a main area of focus. Additionally, I also learned a lot about other practices and much about

other activities HISP India do in relation to DHIS2, such as configuration, end-user training,

integration of DHIS2 with other systems, custom development of reports, and challenges

www.manaraa.com

 27

related to various DHIS2 versions and upgradability. Through this, and due to the long time

spent in India, a lot of knowledge was gained on the broader organizational culture of HISP

India.

Data Collection Methods

Due to the long field trips and many data collection methods used in India, the different

methods will be presented one by one in the subsections.

Interviews and Workshops

Most of the interviews on the first trip were very informal, being unstructured, and more

reminiscent of ordinary conversations (Zahle, 2019). This was beneficial because the

developers were working under quite immense time pressure, and it was easier for them to

stop and take a five-minute chat with me, rather than having to plan it and set of time for me.

At the same time, I could guide the interviews towards the topics of interest. Some

discussions were done during lunch, others over a brief coffee break. As these interviews

were very informal, they were also hard to count, thus they are not included in the overview,

but it is estimated that these account to about 30-40 interviews. These very informal

interviews were not recorded, but notes were taken during the interviews. The more formal

interviews are summarized in Table 3.

As HISP India has many clients, we were invited to take part in one of their bigger clients,

Alpha Consulting, and use this as our case for research. During the first trip, me, my

supervisor, and a couple of the other master students got to interview representatives from

Alpha Consulting. We also did field visits to hospital facilities, where we interviewed

different end-users. Contextual interview was then an appropriate method, as we could ask the

data entry personnel to show us how they would perform their tasks. While they demonstrated

their practices for us, we would ask follow-up questions when necessary. On the trips, we had

with us a representative from Alpha Consulting as well as one of the HISP India employees.

www.manaraa.com

 28

Figure 4: Contextual interview of end-user at a hospital facility in Uttar Pradesh.

On the second field trip to India we no longer had access to Alpha Consulting due to some

bureaucracy. Thus, I did a lot more formal, yet still semi-structured, interviewed with the

HISP India team. These interviews were conducted by me and one of my fellow master

students. We had prepared an interview guide, with some topics and questions we wanted to

ask. This was to enable discussions, and follow-up questions from both us, the interviewers,

and the participants. The interviews were mostly conducted in a small meeting room in the

office, closed off from the open landscape where the HISP India team worked. Before the

interview started, we would inform the interviewee about the purpose of the interview as well

as how the data would be stored and used, before we asked for their consent. These interviews

were recorded, so we asked if this was ok for the interviewee. We had quite similar interview

guides for interviewing the implementers (the public health group) and developers (the

technical group). However, the follow-up questions would be quite different, as the

interviewees explained the process from the perspective of their role and their responsibilities.

Almost all the interviews started with asking the interviewee to tell us about a project they

had worked or were working on. We would follow this up with questions about who was

involved in the projects and about the general process in the project from start to end. We

asked the interviewee to describe their role in these projects, and whether or not there was

anything they would want to change about the process. We also asked them about the

challenges they had faced in projects, who else was involved from the HISP India team, and

www.manaraa.com

 29

how they would communicate within the HISP India team as well as with the client. Lastly,

we would end by asking how long the person had worked for HISP India.

Additionally, a total of four workshops were held. The themes for the workshops were: two

workshops focused on design techniques, one held by a core team member on the DHIS2 App

platform, and the last about local design and usability. The length of the workshops varied,

the first two were each held in one day, the App platform workshop over two days, and the

last spanned over a full workweek. In the workshops both implementers and developers

participated, except for the App platform workshop where only the developers participated.

Figure 5: Workshop with HISP India, in Noida, India.

Table 3: Interviews and workshops (very informal interviews not included) conducted during
the two visits to India.

Activity Total activities conducted Participants

Workshops 4 • Developers HISP India

• Implementers HISP India

• Master students from UiO

• Ph.D. candidate from UiO

• Developer from Core team

Interviews First trip:

• HISP India office: 4

• Developers HISP India

• Implementers HISP India

www.manaraa.com

 30

• At Hospital facilities: 3

Second trip:

• HISP India office: 10

• Data Entry Operator (DEO)

• Monitoring and Evaluation

(M&E) Officer

• Researcher at HISP India

Participant Observation

Participant observations consisted of both observing how the developers were working as well

as participating in meetings, workshops, and other events that unfolded in the office. Most of

the participation was done in what Zahle (2019) describes as a weaker sense, we would hang

around in the office and try to observe and take note of what was going on. This was done to

get a better understanding of how the HISP India team worked and a better understanding of

the work environment and the context.

Document Analysis

Document analysis was used extensively throughout the research. Before the introduction of

the new resources provided by the core team, a thorough document analysis was conducted of

all the custom applications made by the HISP India team for Alpha Consulting. This was done

to get a better understanding of how the team developed applications. Throughout the

research, I also did document analysis of the source code the developers had made, as this

allowed for follow-up questions about for example libraries used by the developers, and a

better understanding of the development practices.

Photos and Diary

During both trips to India, I kept a diary. Each day was described, from what had happened

and been done in the office that day, to the events that unfolded in our everyday life. A lot of

photos were also taken during the trips, documenting many aspects of the trips. The diary and

photos were very helpful, as they made it a lot easier to recollect things after the visit, such as

when certain events unfolded. It also helped in remembering the context.

www.manaraa.com

 31

Context and Challenges

Due to the long time spent in India, my fellow master students and I gained a deep

understanding of the HISP India organization and their work practices. We also got a good

understanding of the culture in the HISP India office. On our first trip, which lasted for four

weeks, we became quite well acquainted with the HISP India team. In-between the two trips,

we also stayed in contact with the team. This made it easier when we came back for the

second trip lasting six weeks because we could then “slide” back into the team and could go

more directly into the research, without all the formalities when being new to the context. At

the same time, it was beneficial to have a break between the two field trips, as some distance

can make it easier to analyze and better understand what we have learned.

Even though we felt we had somewhat understood the cultural context in the HISP India

organization, there are still many things in the broader Indian culture we did not understand,

which can have been barriers to our understanding. The language was of course a challenge.

Even though almost everyone in the organization spoke English very well, a lot of interesting

information may have been lost, as they would often switch to Hindi in discussions during for

example the workshops, and we did not understand what they were talking about. The

language barrier was most evident during our sessions with end-users at the hospital facilities.

As most end-users did not speak English, either the Alpha Consulting representative or HISP

India employee would translate for us. Sometimes the user would talk for a long time and

have discussions with either the HISP India employee or Alpha Consulting representative,

and in the end, we would get a short summary of what had been said.

As mentioned, we did get quite well acquainted with the HISP India team. However, they had

a quite high turnover of developers. During the first trip, there were about 7-8 developers in

the team. On the second visit, only three of the original developers remained (one of which

was located in Lucknow, India), and they had four new hires that had worked there for a

couple of months. This led to us becoming best acquainted with implementers, but also the

developers who had also been there on the first trip. Besides spending time together at the

office, we also did some social activities together with the HISP India employees, such as

visits to markets and eating out at restaurants. However, in the office the HISP India

www.manaraa.com

 32

employees would often refer to us as “ma’am” and “sir”, a term often used to express respect,

often used when referring to superiors. This was also noticeable within the organization in

general, as the team would also use these titles when talking to or talking about someone

superior to them in the office.

Even though we sometimes felt that we had “become one of them”, it was still clear that there

were still some cultural barriers. One example was when celebrating the holiday Diwali in the

office. The office was divided into teams, and each team was going to make a Rangoli

(creating patterns on the floor with colorful powder). It was hard to follow what the plan for

the Rangoli was, as a lot was said in Hindi and no one shared any plan. One of my team

members disappeared just after we had been assigned into groups, and it was not until the end

I realized that he had been in another room the whole time painting a jar that would be placed

next to the Rangoli. So even though we mostly felt that we had a good understanding of what

was going on, there were still these small events reminding us that there was still a lot that we

did not understand.

Another challenge we faced, was that we knew little about the domain when we visited on the

first trip. During conversations, interviews, and discussions, many domain-specific terms we

did not know the meaning of were used. The HISP India team and Alpha consulting would

use these terms often assuming we understood, or not considering that it could be unfamiliar

to us. We would write down what we heard, and later on, we structured our notes on a

whiteboard and discussed it with some of the HISP India employees. This would often clarify

what parts we had not understood correctly, and the HISP India employees would explain. An

example of this was from our field trip to some Hospital Clinics where the interviewees kept

talking about “emeny”. It took us a quite long time to realize that they were discussing “M &

E”, which stood for Monitoring and Evaluation.

Lastly, we also experienced that environmental factors in India were challenging. During our

second trip to India, the air pollution in Delhi and Noida was record high. The extremely high

levels of air pollution, which was rated as “hazardous”, put a great toll on us. We had

www.manaraa.com

 33

headaches, felt drowsy, and lacked energy in general. During this period, many of the HISP

India developers and implementers would take days working from home. This was also

challenging, as they were unavailable for follow-up questions, and sometimes we would have

to wait for days before they came back to the office. The air pollution affected both our work

as well as that of the HISP India team.

Figure 6: The record-high air pollution in India had an impact on us, our research as well as

the HISP India team.

4.2.3 HISP Tanzania

A brief field trip to Dar es Salaam, Tanzania, was conducted in May 2019 by me and my

supervisor. We spent three days at their office, with a day in-between the first and the second

visit. The first day was spent on going through the applications they were currently working

on, and their implementation involvement and process. They also presented the libraries they

had developed to support their app development. On the second day, we held a Design

Workshop where my supervisor introduced some research concepts, the themes were:

usability, user experience (UX), users and user participation, methods and techniques to

understand and involve end-users, and analysis and prototyping. In the end, we discussed how

www.manaraa.com

 34

these themes related to HISP Tanzania’s work process. On the last day, we discussed the

commonly used approaches to tailoring DHIS2. We discussed current work processes, and

which tools they used in the development of custom applications.

Data collection methods

The sessions mainly consisted of group discussions. The team at HISP Tanzania, as with

HISP India, consisted of both developers and implementers. The group discussions consisted

of us, and the five developers at HISP Tanzania. Each of the sessions lasted about a full day.

In-between the sessions, I conducted a document analysis of the libraries and applications

published by the HISP Tanzania team, which was also presented and discussed with the HISP

Tanzania team. During this trip, I also kept a diary and took some photos of the unfolding

events.

Challenges

It should also be mentioned, that due to the short time spent in Tanzania, the same insight was

not gained in Tanzania as within HISP India. I only got a “sneak peek” into the HISP

Tanzania organization. I did not get the opportunity to observe their work or come with

follow-up questions in the same way as with HISP India. Therefore, there is a lot that can

have been omitted regarding the findings from HISP Tanzania. However, the learnings from

HISP India provided a basis to better understand much of the HISP Tanzania team's context,

as a lot had already been learned about the health domain, the DHIS2 and its tools and

resources, as well as common practices and challenges.

www.manaraa.com

 35

Figure 7: Group discussions with the developers at HISP Tanzania.

4.3 Data Analysis

Due to the interpretive, qualitative nature of the research, the data analysis is an important

aspect. Anthropologist Clifford Geertz argued that “what we call our data are really our own

constructions of other people’s constructions of what they and their compatriots are up to”

(1973, p. 9). It is thus important to emphasize that the findings are based on my

interpretations and understandings. However, during the data collection, patterns started to

emerge, and the findings from the various data collection methods supported each other,

which further strengthened the quality of the data. Many of the findings were discussed with

the participants. This was beneficial as they would often supplement the findings or could

rectify misunderstandings. This further strengthened the validity of the findings.

A hermeneutic approach to understanding was natural due to the exploratory nature of the

research. Thanks to the practical learnings shared from the Design Lab and theoretical

contributions in the field, I started with some pre-understanding of the field. Prior to the field

trips, I already had an interest in resources for developers and was interested in the

participants' practices in developing applications. Once getting a bit familiarized with the

HISP India organization as a whole and its practices, I started attempting to understand the

www.manaraa.com

 36

various practices related to developing applications. However, it quickly became evident that

I needed to understand more about the broader context and other practices related to the

implementation of DHIS2. Once a better understanding of the whole was gained, the focus

could return to the specific parts of interest. The research went on like this throughout the

project; going out to investigate the broader situation, gaining more understanding, and then

zooming back into the various parts, getting a better understanding of the whole, and

repeating the cycle. Even though the practices of application development were the main

interest, it was not possible to understand or ask the right questions about it without a broader

understanding.

The learnings also went in cycles in relation to the various contexts from which data was

collected. Combined, the learnings from HISP India, HISP Tanzania, and the core team

provided not only insight into their practices, but also a broader understanding of the various

actors and activities that surround the DHIS2 as a whole. Each learning from the parts

provided a better understanding of the whole, which again would make it easier to understand

other parts or get a deeper insight into the parts. Figure 8 illustrates the analytical process

followed in the research.

www.manaraa.com

 37

Figure 8: Analytical process for the research, based on hermeneutics.

www.manaraa.com

 38

5. Findings
This chapter will present the findings of my research through five main sections focusing on;

1) DHIS2 resources to support implementation-level design,

2) Practices of current app development during implementation-level design,

3) Local resources related to app development,

4) Challenges with app development during implementation level design, and

5) the core developers' new boundary resources aimed at strengthening the design

infrastructure around application development.

The findings will be presented based on the topics, as it helps highlight the different activities

surrounding application development, both during implementation-level design and generic-

level design. As the findings are presented in this way, a timeline is provided in Figure 3 in

Chapter 4, to show the chronological order of how the events unfolded.

The findings presented will provide a basis for the analysis in the next chapter. The findings

will start with a description of the existing practices of application development during

implementation-level design within the two organizations HISP India and HISP Tanzania.

Following this, I will explore the local resources that have been developed by the two

implementation-specialist groups to strengthen the implementation-levels capacity to

innovate. I will then present the current challenges the two implementation-specialist groups

are facing related to developing custom applications. The next section will focus on the

platform resources the core developers recently have introduced to the design infrastructure to

make it easier to develop applications for the DHIS2 platform, including an user interface

component library and an app development resource platform.

5.1 DHIS2 resources to support Implementation-level design

This section will present some of the boundary resources provided by the DHIS2 core

development team for the DHIS2 design infrastructure. The DHIS2 core team has developed a

range of resources to better support implementations of DHIS2. Among these resources are

www.manaraa.com

 39

documentation of different aspects of DHIS2, there are several different developer guides,

configuration guides, tutorials, demonstrations of the software, community forums, security

procedures, and information about cloud hosting. The core team also takes part in DHIS2

academies, where they train implementers and developers on different parts of DHIS2

implementation. The academies’ themes range from Data Quality or Analytics tools to more

technical aspects such as Server Administration or Web App Development.

Additionally, the core team develops and maintains the DHIS2s core code and the bundled

applications. The bundled applications are designed with configuration options and aimed at

being used without much effort besides configuring, for example configuring the data

elements needed for a data entry application. The core team now has developed and is

maintaining about 34 applications and 6 libraries. These are supported in four versions of

DHIS2, which means that they have a lot of code to maintain.

Two of the libraries previously developed by the core team aimed at strengthening the

development of applications is d2 and d2-ui. D2 is a JavaScript library to abstract away

complexities of doing DHIS2 API calls and provides models to communicate with the DHIS2

server. The d2-ui library offered UI components, ranging from simple components such as

buttons, progress bars, or select fields, to more complex components such as a header bar and

organization unit trees. The header bar has to be integrated with the DHIS2 instance, for

example getting the DHIS2 instance name and showing the user available apps in the specific

DHIS2 instance, whereas a button has no dependencies. In other words, the d2-ui consisted of

both integrated and freestanding components. In an effort to improve the resources the core

development team developed new resources based on the existing d2 and d2-ui.

Efforts to further strengthen both internal and external app developments were made by

developing two new resources; the DHIS2 Design System and the DHIS2 App platform,

which will be elaborated on in section 6.5. Due to the initiative of these resources, the d2-ui

was discontinued and replaced by the DHIS2 Design System. The d2 library persisted, but the

new App platform made it obsolete.

www.manaraa.com

 40

5.2 Practices of App Development during Implementation-level

design

The following section will present the current practices and processes in HISP India and HISP

Tanzania, particularly related to how they currently develop applications. In other words, it

follows the organization’s implementation-level design process. The implementation

processes will be described broadly, from the start of a project to their approaches to find a

solution, as well as when it is the implementation-specialist groups decide to make

applications and the practices of how they make the applications. This information is

important to understand and analyze how the new resources can fit into the implementation-

level design process of the two implementation-specialist groups.

5.2.1 HISP India

When and Why Applications Are Made

HISP India has many ongoing projects, the projects are mostly centered in Asia, yet they do

have projects across the globe. Their clients range from government ministries to NGO’s.

HISP India gets new clients through usually two approaches. Sometimes clients approach

them and ask if they can take on the project. Other times they find projects that they feel can

fit well with DHIS2, and they bid on the contract. Once they have gotten a new client, an

implementer assigned to the project starts gathering the requirements. The requirements are

mostly focused on what kind of output values the client wants. Once they have the

requirements, the implementer starts mapping the outputs, figuring what kind of data input

values they need to generate the clients desired outputs. After that, they configure DHIS2 for

the required inputs. If the requirements cannot be addressed through the standard

configurability of DHIS2, the implementer asks for support from the lead developer. HISP

India often attempts to negotiate requirements with the client if their requirements are not

possible to configure. If this happened, the HISP India team would sometimes attempt to

make a Jira ticket to the core team, expressing requirements, configuration options, or features

they wanted. However, they rarely received any response from the core team. One developer

explained that he had put in a request 6 months ago, but no change or response had come of it

yet. So, if the client is persistent in their requirements, and it is not possible to deliver a

solution through configuration, the team develops a custom application for them. One of the

www.manaraa.com

 41

developers explained that they were needed “when there is a roadblock. The configuration

team they give up. They say ‘no, this is not possible anymore, now we need some help’ ”, and

it was at this point a developer was brought onto the given project. Configuration was the

preferable option, as custom applications took a lot more time and hence, were more costly.

The HISP India team stated that the client does not care if their solution is a custom

application or achieved through configuration as long as it fulfills the requirements. The HISP

India team would go to great lengths to make a client’s solution through configuration, but if

a configuration was not possible, they would develop custom applications for the client.

Usually, one developer is assigned to the task and works alone on developing the application,

however, the developer works together with an implementer. The implementer communicates

and gathers the requirements from the client, and forwards these to the developer. Once the

application is made, the solution is handed over to the client. If the solution is approved, the

developer gets reassigned to other tasks or projects. The implementor is often the one to train

someone, either the actual end-users or more often some managers or representatives from the

client organization, who then is responsible to further train the end-users. If the application is

not approved, the developer changes the parts the client wants to change. It is not uncommon

that the developer sometime later gets new requirements from the client and must do new

changes in their applications. Hence, most work HISP India do regarding applications, are

changes in existing applications.

Another reason for why the HISP India developers had to develop custom applications was

when bundled applications changed. The core team would regularly update the bundled

applications with new features and user interfaces. If features used by clients of HISP India

were removed from the applications, the HISP India developers would sometimes be forced to

customize the application to make these similar to the old version of the bundled application.

This had happened with several applications used in the UPHMIS project, and Alpha

Consulting had requested several custom applications be made.

www.manaraa.com

 42

How Applications Are Made

As mentioned, developers at HISP India usually work alone as the only developer on a task or

project. For this reason, the developer can quite freely choose the technologies and

frameworks to be used in developing the application. When starting on a new application, the

developer assigned to the task receives the requirements the implementer had gathered from

the client, which mainly consists of a list covering the functionality which the client wants.

There are rarely specific requirements for the UI. One of the developers said that he often

sketched the UI of his application on one of the whiteboards in the office before he started

working on it, but that he was the only one doing this type of prototyping. During a workshop,

one of the developers said that “we are mainly backend developers, no experts on frontend

and making good interfaces”, and explained that he had looked for university courses for

learning UX design, but that he had not found any offered at any university in Delhi.

The developer usually starts with a fork of an existing app. When doing a fork, the

application’s code and everything else that might be in its repository are copied into another

repository. From this new repository, a developer can do changes in the code without

affecting the original application. The HISP India developers would often fork bundled

applications the core team had developed, and they had one bundled app, in particular, they

forked very often. They had also made forks of the bundled applications which they did not

modify. They did this to keep older versions of the bundled applications in their repository, as

their fork of it would not be updated even if the core team updated their bundled applications.

The application the developer starts with is therefor often found in HISP India’s GitHub

repository. In the repository, they have sub-repositories consisting of all the applications they

have made, as well as forks of bundled applications. As one developer said “we take a

structure and we modify it. Usually a structure we have already made”. Once they have found

the most fitting existing application, the application is forked from their repository. For the

bundled applications, this meant that they would fork an application that they had previously

forked into their repository from the core developers, and then do changes to the code to make

it fulfill the requirements of the client. Other times, if the forks of the bundled applications or

their own previously developed custom applications are too different from what is wanted,

they look for other options, such as applications developed by other implementation-specialist

groups of DHIS2. The process is illustrated in Figure 9. This shows how the HISP India team

www.manaraa.com

 43

utilize existing applications when developing solutions for their client. It also shows how the

custom applications developed goes back into their repository and can be utilized in future

projects.

Figure 9: Process of how developers at HISP India create custom applications.

www.manaraa.com

 44

5.2.2 HISP Tanzania

When and Why Applications Are Made

As with HISP India, HISP Tanzania also preferred configuration over the development of

custom applications, as the development of custom applications was very time consuming,

and hence also had a higher cost. They explained that configuration was usually enough when

implementing an HMIS, but when they were working with other domains, they would almost

always have to create custom solutions. The team had ongoing projects in many countries and

within an increased variety of domains, such as agriculture, water programs, sanitation, social

welfare, and several others. When configuration was not possible, they would see if any

existing applications could match, otherwise, they would see if any bundled applications

could be customized to fit.

If it was decided that a custom application was needed, they had mainly two different ways of

starting. If they had experience in making solutions for the given domain they were making

the application for, they would start the development based on the client’s requirements.

However, if the domain was new to them, the developers, together with implementers, would

start by talking with a domain expert of the field for which they were making the application.

In the first meeting, they often did not have any particular questions for the domain expert,

but they mostly asked about things that came to mind during the discussions. The aim of these

meetings was to understand what kind of applications or solutions the HISP Tanzania

developers could make for the client and to understand what was needed to meet what the

client was thinking. After getting an understanding of what was needed, they would often start

sketching a solution on paper. The developers would then discuss the sketches with each

other. Internal discussions and sketching of prototypes would be done in several iterations.

Once they had reached a sketch they were satisfied with, they would start developing the

application. They described their meetings with the domain experts as progressive. As they

developed, questions would emerge. They would then bring their prototype to the client and

ask them about things and get feedback on the solution. Ideally, they would also like to show

and discuss the prototype with the end-user. However, this was usually not possible due to

limited time and funding in the project.

www.manaraa.com

 45

Once the application was accepted by the client, the developers would often be involved in

training the end-users. One developer stated “Actually in training, if any person has

developed a particular feature, they have to be there in the training. [To] see how the solution

works”. They explained that their role was not only being developers but also implementers.

During these training sessions, the developers would observe the users and what they struggle

with in the applications. If they experience that many end-users struggled with the same

things, they would sometimes do changes in the applications later on. The experiences gained

through training end-users were also beneficial for them when they developed applications.

Even though they most often did not have access to end-users in the development phase, they

would use their experiences to try to put themselves in the end-users shoes and keep this in

mind when developing an application. One developer expressed that they had “acquired

advanced skills through training [end-users]”, both in understanding the end-users, as well as

understanding many domains for which they had developed solutions for. They argued that

the experiences gained from training end-users could somewhat compensate for the lacking

involvement of the end-users in the development phase.

HISP Tanzania would not only develop applications for their clients, but they would

sometimes also develop applications “for fun” as a contribution to the DHIS2 community.

They would take some time to be creative and make innovations that could be used in the

future. These applications have been developed generic enough to be used by many, and often

have configuration options to adapt it to different contexts. These applications, as well as

other custom configurable applications developed for clients, have been published to the

DHIS2’s online application “store”, as illustrated in Figure 10. Publishing the applications to

the online store makes them available for anyone to download to any DHIS2 instance.

www.manaraa.com

 46

Figure 10: Applications created by the HISP Tanzania developers published on the DHIS2

online "store".

How Applications Are Made

As with HISP India, HISP Tanzania had often forked bundled applications and made changes

to it to get more flexibility than what the bundled application offered to fulfill the client’s

requirements. When deciding between forking a bundled application or creating an

application from “scratch”, they considered what was most feasible, and also the time it

would take. Usually, if the solution the client is looking for was similar to some of the

bundled applications, they would fork it and add functionality to serve the specific case.

However, as one developer stated, “if we have to bridge together more concepts from DHIS2,

then we start from scratch”. Timewise, they estimated that there was not much difference, as

it took time to familiarize themselves with the existing code in the forked application. They

also considered the long-term effects, such as if the application could be used in the long run

and future maintenance work. They explained that the changes were not hard to do, however,

the most challenging was maintaining the application. They also took into account whether or

not they thought the application to be developed could be used in other places later on. If it

www.manaraa.com

 47

could be useful later on, it was better to create a custom application, so that it could be used to

solve other similar problems. They preferred to create their applications from scratch, as this

allowed them to choose the technology and frameworks supporting the application.

When developing applications, one developer expressed that they would “try to think ahead

and create an environment that can support changes. And also take into account future

maintenance and changes”. For example, some applications had been custom developed for a

client with specific requirements. This application had been developed, yet with many

configuration options, making it fulfill the requirements for the specific client as well as

making it usable for others in the future. This also made the application easier to adapt to

changed requirements from the client. This design coupled with a document explaining step

by step how to configure the application, made it possible for the others to configure the

application themselves without the support of the HISP Tanzania team. In addition, the

developers created a demonstration to further help the user to configure the application as he

or she wanted without needing any programming skills.

5.3 Local Resources

As illustrated in the last section, there are some differences between the processes of which

HISP India and HISP Tanzania develop applications even though they develop applications

for the same software and have many similar projects. This can be due to many factors, such

as different types of clients, difference in funding, and capacity. However, to make the

development of applications easier for themselves, the two DHIS2 implementation-specialist

groups have developed a range of resources to support the development of applications. This

section will focus on these resources they have developed themselves. Both implementation-

specialist groups had developed their own local resources and practices, yet, they had done so

in a quite different manner. This need to develop their own resources could suggest that the

DHIS2 design infrastructure provided by the core team is inadequate and that the local

resources and practices might be an initiative to compensate for these shortcomings.

www.manaraa.com

 48

5.3.1 Local Resources at HISP India

At HISP India, the developer working on a given application can freely choose to use any

framework and libraries they deem fit for the project. Going through the source code of many

of the custom applications developed by the HISP India team shows that there is a variety of

external libraries and UI components used in the applications. One developer expressed that

she would “never write a whole code for this [showing me an application]”, and that as long

as there was a library that could do what they wanted to achieve, they would always choose to

use the library rather than writing something from scratch. Many libraries are available online

and provide simple, freestanding UI components, such as buttons or checkboxes, so libraries

were often used for these purposes. However, DHIS2 specific components, such as the DHIS2

header bar or the organization unit tree, shown in Figure 11, were often mentioned to be

challenging. For these components, the developers would often copy-paste code of the header

bar or organization unit tree from another one of their projects. Especially the developers who

had worked there for a longer time, knew a lot of the code basis in the existing applications

and knew which application to go to in order to find the code parts they needed. One of the

most senior developers had also developed a couple of his own components, among them the

organization unit tree, which he published to a package manager software, and frequently

reused. As they could freely choose which libraries they used, it differed a lot among the

developers. Each developer had over time developed their own set of resources that he or she

would use when developing applications, such as preferred libraries or existing code they

liked to take code parts from. Many developers expressed that once they had come to

familiarize themselves with some code or library, they would prefer to continue using it

whenever possible, as getting familiar with other's code or components took a lot of time.

www.manaraa.com

 49

Figure 11: One of the applications developed by HISP India.

HISP India’s GitHub repository, mentioned in the last section, can also be seen as a part of

the design infrastructure. They keep all their existing applications in the repository and

frequently reuse existing code structure as a starting point when developing new applications.

They also reuse parts of various applications in the repository, as the code parts they need are

copied from existing applications and pasted into new applications.

5.3.1 Local Resources at HISP Tanzania

The HISP Tanzania developers have developed many custom applications for clients but also

more generic applications not developed for any particular client, but rather for the DHIS2

community. The team described that they had a recent initiative which they called

“componentizing”, where they aimed at creating reusable components. They created several

libraries of their own, consisting of useful components to support the development of

applications. All their libraries were published on a package manager website, which makes it

freely available for anyone to use. They had two processes of how components were made,

which are illustrated in Figure 12. One of the developers expressed that innovations came in

two ways, “either a problem looking for a solution, or a solution looking for a problem”.

When developing applications, they would try to think ahead on what could be reused and

www.manaraa.com

 50

develop the application as modular as possible. If they later developed an application that

needed some of the same functionality, they would extract that part of code and create a

component of it. They would then publish the component to one of their package libraries to

the package manager software and change the two applications so that they imported this,

now external, component. The other process in which components were created, was by the

developers creating a component they anticipated would be useful in the future. This was, of

course, no guarantee for the components being needed. However, these components often

ended up being used. For each component developed, they would create a README file that

explained how to configure and use the given component. When they worked on the

components, they would consider the implications of every new feature. If too much changed

or the component became too complex or specific, it could affect the reusability of the

components. The developers focused a lot on making the components with many

configuration options. This made the components flexible, and it made it easier to avoid too

many components. The goal with the component libraries was to reuse them, as it shortened

the time and reduced challenges they had when implementing an application for DHIS2.

Figure 12: Illustration of the two processes in which new components were created by the

HISP Tanzania developers.

The components developed by the HISP Tanzania team consist mainly of functional

components, rather than UI components. The reason for this was that the “customers are not

so concerned with the UI” as one developer stated. Thus, for the UI, they had in almost all of

www.manaraa.com

 51

their applications used the popular, free-to-use, UI library Angular material made by Google.

They had also developed components that combined functionality and UI. For example, their

organization unit tree-component both had an UI element showing the tree structure, as well

as the API services needed to get the organizations from the DHIS2 instance. Another

example was when they needed a menu for the UI. They asked the core about a menu

component they had previously used, but it was no longer maintained by the core team, so

they ended up making their own menu component. Almost all of their components were

developed to be used in the Angular framework.

In addition to the development of libraries and components, the developers had also

developed a Seed app, illustrated in Figure 13. The Seed app is a sort of template application

created with Angular framework, consisting of UI elements from Angular material. The

application serves as their starting point when developing new applications. A lot of the setup

needed to connect an application to a DHIS2 instance was already in place, with instructions

on how to set it to your chosen instance. The application consists of all the parts they

considered shared by all DHIS2 applications such as the header bar, API services, loading

screens, and so on. The application was also documented with a README file, explaining

how to install and start running the application.

Figure 13: HISP Tanzania's Seed app

www.manaraa.com

 52

As with HISP India, HISP Tanzania also reused existing code in their GitHub repositories.

However, they had organized it a bit differently. They had two main repositories; iapps and

hispTz. Within the hispTz repository, they organized the source code of projects they had

implemented. However, in iapps, they had all their generic innovations; both generic

applications as well as components. This made it easier for them to find the reusable parts.

This also made the components easier to maintain, as the components would only have to be

updated in the iapps repository. When updating in the repository, changes would be updated

in all the applications using the components. This was because they did not copy and paste the

component into other applications, but because they published them to the package manager

and imported the components into their applications.

HISP Tanzania mainly worked on implementing DHIS2 and creating solutions for clients.

Despite this, the developers had not only developed their local resources for themselves to use

but also for others. Some of the resources had been developed for other developers. One of

the HISP Tanzania developers explained that one of their libraries had been developed for the

HISP Uganda developers, he stated that “We as developers are used to writing [code] for

developers in other countries. Developers as users”. Hence, the HISP Tanzania group is also

doing activities related to generic-level design, where they were providing resources aimed at

supporting others in developing applications in implementation-level design. The resources

and libraries they developed were mainly aimed at being generic, open, documented, and

available for anyone to use. These resources often served a dual purpose, supporting both

their app development, as well as those of other app developers for DHIS2.

5.3.2 Summary of Local Resources

To summarize, the resources utilized by the two implementation-specialist groups consisted

of many resources besides those provided by the core team. Table 4 highlights the different

local resources utilized by the two implementation-specialist groups in the development of

custom applications. It should also be mentioned that the two implementation-specialist

groups have developed applications in different quantities, and with differing purposes. Both

of the groups have developed applications as custom solutions for specific implementations.

However, HISP Tanzania has developed a larger amount of applications compared to HISP

www.manaraa.com

 53

India. Many of HISP Tanzania’s applications have also been developed to be generic and

aimed at being used by many, rather than being developed as a custom solution for a specific

implementation.

Table 4: Resources utilized by the two implementation-specialist groups in custom app
development.

HISP India HISP Tanzania

• Libraries and structures

provided by the core team, e.g.

d2-UI and bundled apps

• External UI libraries

• Some self-made, reusable

components

• Code structures in their GitHub

repository

• Libraries and structures provided by the

core team, e.g. d2 and bundled apps

• External UI libraries

• Many self-made reusable components

and libraries

• “Seed app” – standardized template app

• Made resources that are also used by

other app developers

5.4 Challenges with App Development

The HISP India developers had several times described time pressure, with short deadlines

and high expectations from the client. In addition to developing applications, the developers

had many other additional tasks, such as making HTML reports, integrations towards other

systems, customization of the core, and technical support for their clients and the

implementers. In other words, the developers often had a lot of other things to do besides

working on applications. The challenge of having several other tasks was also mentioned by

the HISP Tanzania team, who stated that they did “Some work on development and

innovations, but at the same time being an implementer”, and expressed that the many tasks

and short deadlines were challenging.

Over time, the HISP India developers had made several custom applications. One developer

expressed that “custom apps are uncontrollable for us now”. The HISP India developers had

www.manaraa.com

 54

developed many custom applications, to the point that maintaining all of the custom

applications, had become one of their bigger tasks, as well as a major challenge. Also, new

requirements for the existing custom applications kept coming from the clients. Hence, a lot

of the application related work was not making new applications, but rather making changes

to and maintaining the custom applications. Maintenance was also, as mentioned, a challenge

for the HISP Tanzania developers. In contrast to the HISP India developers, HISP Tanzania

had taken measures to control the maintenance work, and the long-term cost of maintaining a

custom application would always be taken into account when they started working on a

solution. By developing libraries of components and using these when developing

applications, the HISP Tanzania developers would only have to maintain the components in

the library and they would be updated within the applications that used those components.

HISP India would often reuse components by copying and pasting code from their repository

into their applications. A consequence of this approach was that whenever a component

needed to be maintained or changed, they would have to do so in all the applications that had

used that part of code. Hence, even though HISP Tanzania and HISP India both deemed it

challenging to maintain the custom applications, HISP Tanzania had the capacity to make

solutions that would reduce the long-term maintenance work needed.

Another challenge HISP India had was that it was very hard to upgrade the DHIS2 instances.

The client did often not see the value of doing so, and even if they got the client agreed that it

was necessary, it could take up to 1.5 years just to get the approval and funding to do so due

to bureaucracy. If they did get the approval and funding necessary to upgrade, they would

then have to do the necessary changes in the new version of the implementation, such as

redoing the customization of the core, which was often required due to security requirements

from the client. Sometimes, configurations would also have to be re-done, and the custom

applications would also have to be maintained since upgrades often came with some changes

to the core. Upgrading the DHIS2 instance had widespread consequences. Both the two

implementation-specialist groups expressed that a challenge with upgrading was that by doing

so, the UI in for example bundled applications tended to change a bit. Changes in the UI

could become quite expensive, as this would often result in the need for retraining many of

the end-users.

www.manaraa.com

 55

HISP India also expressed that their old DHIS2 versions often posed challenges for them. A

consequence of not upgrading was that that they did not get access to new features they knew

existed in newer versions. This meant that if their clients wanted these features, they would

have to do so by doing custom changes in some of their applications or provide new

applications for the client. In other words, they would have to develop something custom of

which the core team had already developed and provided.

The last major challenge for HISP India was that there was a quite high turnover among the

developers. Between our first and second trips, four developers had quit, and four new had

been hired, meaning only two of the developers had maintained. New developers received

little training and had few resources at their disposal to learn. Since the developers worked

alone, it was therefore hard to transfer the knowledge of the experienced developers to the

new ones.

Even though the two implementation-specialist groups did not necessarily have all the same

challenges, the challenges will be summed up together. In total, there are four main

challenges in relation to application development in the two implementation-specialist groups:

• Time pressure and many other tasks.

• A lot of work with existing custom applications due to maintenance and changes

needed because of new requirements.

• Many instances with old versions. Costly to upgrade software instances to get new

features. Hence, have to custom develop some of the same features, even though the

features are already provided by the core developers in newer versions.

• High threshold for learning new skills, combined with little training for new

developers and high turnover of developers.

www.manaraa.com

 56

5.5 Core Developers Work to Strengthen the Design Infrastructure

around App Development

This section will present the new resources developed by the core team aimed at

strengthening and supporting application development. The background for developing the

new resources; the Design System and the App platform, was to give developers a framework

that they can use to easier create and maintain applications for DHIS2. The new resources

have a dual aim, which is to strengthen the internal development process of the core team and

to strengthen external development processes for others such as the implementation-specialist

groups. The following subsections will present how the new resources, the DHIS2 Design

System and the App platform, evolved.

5.5.1 The DHIS2 Design System

The DHIS2 Design System is an initiative by the core team, to make it easier for internal and

external developers to create a consistent UI throughout their platform and applications, as

well as making it easier for them to develop and maintain their software. As mentioned,

before the implementation of the Design System, DHIS2 had a library called d2-ui. The d2-ui

library was written in pure JavaScript, which meant that the components could be imported

into any JavaScript file, regardless of which framework that was used. The development of

the new Design System started late in 2018. It started as a simple UI library, consisting of

mainly freestanding elements, but also a couple of integrated components (such as the DHIS2

header bar). The UI library was based on the d2-ui and was developed to replace it. In

addition, the core team also hired a visual designer as a consultant, to get the help of an UI

expert when developing the new resources. The visual designer ensured that the UI was

modern looking, consistent, and user friendly. The core developers did the technical

implementation of the resources.

The UI components are created with React, so they could only be used by React applications.

To structure the different types of components clearer, the core team created two libraries;

DHIS2/ui-core and DHIS2/ui-widgets. The DHIS2/ui-core consists of all the freestanding

components which have no dependencies to DHIS2. The DHIS2/ui-widgets consist of more

www.manaraa.com

 57

complex components that have dependencies and need to be integrated with the DHIS2

instance.

Figure 14: Some of the components in the first version of the DHIS2 UI library.

In April 2019, the Design System changed quite a bit. The components were moved to a

website that is a development environment and playground for UI components. The website

allows you to view a component library, and interactively develop and test components. This

was done to make it easier to provide documentation and example code for each component.

More elements were also added to the Design System, in addition to the UI library, standards

for when and how these components are to be used, and design principles were added. All the

new information and resources were added to GitHub, where each component has a page,

showing the standards and documentation for that specific component. On the top of the

www.manaraa.com

 58

components page, there are links to the component's design specifications and a working

example of the component. The information provided is an explanation of what the

component is used for, and how to use it when developing the UI for an application. It also

provides the different options you have to configure the component, and which states the

component can have. Lastly, there is an example showing an actual use of the component in

DHIS2.

Following the example of the buttons, the page provides a list of different types of buttons as

well as when the different types should be used, as illustrated in Figure 15.

Figure 15: Usage of the different types of buttons in the DHIS2 Design System.

Further, the documentation explains the options when using a button, such as the option to

add icons to it, or how to change the size, choosing from the three predefined options of

small, medium, or large. Documentation of the buttons state options (e.g. for buttons you can

choose to set the button as disabled) is also provided, such as how to disable the button and

when this should be done.

www.manaraa.com

 59

The newly added design principles consist of five focus areas. These provide the developer

with information on which typography that is to be used, which color spectrums to confine to,

and a scale of spacing between elements that should be used as well as how the elements

should be aligned and stacked. The design principles also explain how to communicate

content and write understandable messages for the end-user with examples of “good” and

“bad” communication. Lastly, it also provides guidelines for how to use icons and suggests

using the open-source library Material Design Icon Library for getting the icons, as this

library is the one the core team uses in their bundled applications.

5.5.1 The DHIS2 App platform

During the summer of 2019, the Core team initiated the development of what they refer to as

an App platform. This is a unified application architecture and build. In other words, it enables

the developer to easily create a sort of template application, consisting of all the common

parts that are shared in about every application for DHIS2. The purpose of the app platform is

to standardize and simplify application development for DHIS2, as well as making it easier to

maintain the applications. One of the core developers explained that an app developer should

only be concerned with the applications “secret sauce”, that is the unique aspects of the

specific application, and the rest of the application’s structure should be provided by the app-

platform. The UI components used in the App platform was of course from the Design

System, and the Design System was an integrated part of the App platform. Figure 16

illustrates which parts of a DHIS2 application that is shared for all applications and that are

provided by the App platform, as well as the applications “secret sauce” that is parts that are

custom in the specific application.

www.manaraa.com

 60

Figure 16: Illustrates structures provided by the app platform and the applications “secret

sauce”. Based on a figure provided by the core developers.

Developing an application with the App platform is not much different than starting from a

forked application. The developer starts with a lot of existing structures, and do the changes

required for the specific implementation. However, the structures provided by the App

platform are maintained by the core team, and changes are updated within all the applications

made with the App platform without having to go into each application and do the changes. In

forked applications, the code is copied, thus the developer has to maintain all of the code in

every fork made.

Figure 17 illustrates how the Design System has evolved, from first consisting of UI

components to the second version where guidelines for using the components and design

principles were added. In the third version, the Design System itself did not change, however,

the App platform was developed, and the Design System became an integrated part of the

App platform. However, it must be clarified that it is still possible to develop applications

using the components from the Design System without using the App platform, and vice

versa. It is also possible to import other external libraries into an application made using the

App platform. Hence, the Design System and the App platform are two different resources,

www.manaraa.com

 61

fulfilling each other. The idea is that these two resources combined can offer all the building

blocks needed when developing an application for DHIS2.

Figure 17: Evolution of DHIS2 Design System.

www.manaraa.com

 62

6. Analysis
The aim of the analysis to get a better understanding of how the core teams newly developed

resources can strengthen the implementation-specialist groups during the implementation-

level design of custom applications. I will analyze how the new resources can fit into the

context of HISP India and HISP Tanzania. I will also present the challenges the

implementation-specialist groups face regarding utilizing the new resources in the DHIS2

design infrastructure.

6.1 How the New Resources Fit the Practices and Challenges

As previously mentioned, one of the core team's aim with the new resources in the DHIS2

design infrastructure is to strengthening external development processes. This section will

look into how the new resources could fit in with the practices and challenges that HISP India

and HISP Tanzania face, and if it can support the implementation-specialist groups’

developers in app development. I will first start with what the implementation-specialist

groups expressed as beneficial and desirable traits with the new resources. After this, I will go

through the various challenges the implementation-specialist groups face in utilizing the new

resources. Through the challenges, it will become clearer how the new resources fit or do not

fit, with the implementation-specialist groups existing skills, structures, and practices, and

how it can be addressed.

6.1.1 Benefits for the Implementation-specialist Groups

Two main benefits, or desirable traits, that the implementation-specialist groups wanted with

the new resources, were identified. These were related to both the implementation-specialists

groups need for reducing the long-term cost of developing applications, and a desire for a

standardized UI. However, as maintenance cost often was perceived as a barrier to making

new applications and most clients did not really care about the UI, the implementation-

specialist group put most emphasis on the former benefit.

www.manaraa.com

 63

Maintenance

A benefit of the App platform is that it moves much of the responsibility of maintenance from

the implementation-specialist groups to the Core team. This was a highly desirable trait for

the two implementation-specialist groups, as both mentioned that maintenance work on

custom applications was an activity that consumed a lot of time and resources from the teams.

Maintenance was one of the main considerations when deciding to make a custom

application. It was also one of the reasons for why they would often go to great lengths to

manage to configure a solution, rather than develop custom applications. In other words, the

new resources do cover a need that the two implementation-specialist groups have.

Standardized UI

The HISP Tanzania developers expressed that they were considering making a solution to

better help them standardized the UI they used when developing applications. The developers

said it was the next resource needed to strengthen their application development. When first

presented with the DHIS2 Design System, one of the developers stated “Now, we need

standardizations. Perhaps this is what we need”. The HISP India developers also expressed

that a standardized UI would be useful for them, as the team consisted of back-end developers

who were not experts on UI. In other words, the team lacked the capacity of a visual designer,

a gap that could be filled by using the Design System.

6.1.2 Challenges for the Implementation-specialist Groups

The Developers’ Skillset

The reason why HISP India initially had chosen to use the Angular framework, was because

many of the bundled applications developed by the core team had been in Angular. When

they customized these applications, they continued working with Angular. Several of the

developers expressed that Angular was preferred, as React was deemed a complex

framework, and they were already very comfortable with using Angular. An often-mentioned

challenge with the applications made is the issue with cache1. One developer said that it was

perhaps one of their biggest challenges with custom applications and that it was easier to

1 Cache, or here browser cache, is a quick, temporary storage area. It stores temporary internet files for faster
viewing of the website in the future.

www.manaraa.com

 64

handle the cache in Angular, but complicated to do in React. They also mentioned that it was

challenging to learn new frameworks, as they already were working under time pressure on

existing tasks. Some of the developers in the HISP Tanzania team had started learning React

and were considering transitioning over to it in the future. However, they did not like that they

were forced to use React. As one developer said, “we are trying to find our own way”. They

were frustrated over the fact that the Design System had to be framework-specific, as the

components in the previous d2-ui had been possible to use in any framework. The HISP

Tanzania developers expressed that they would probably “try to incorporate React

components into Angular”, as Angular was their preferred framework for application

development. Summed up, the developers in the two Implementation-specialist groups prefer

to work with a framework they already know. They either did not want to use React, or they

did know how to use it.

Existing Custom Applications

The HISP India developers explained that if they were to start on a completely new

application, they would consider using the App platform and the Design System. However,

most of their existing custom applications were developed in Angular. One of the HISP India

developers expressed that they do want to align with the core team in terms of for example the

framework used for developing applications and the design infrastructure provided globally.

However, now that about all of their applications were in Angular, it would take a lot of time

rewriting them in React, which was time they did not have. The HISP Tanzania shared the

same concerns and expressed that rewriting their custom applications was out of the question

as it would take too much time.

Other Overlapping Resources

The two implementation-specialist groups had developed many resources for themselves,

many of which provided overlapping functionality with the new resources from the core team.

Both implementation-specialist groups utilized third-party UI component libraries, which was

supported by Angular. The HISP Tanzania developers expressed that if the Design System

had provided more components that consisted of both UI and functionality together, this

would be a valuable resource, however for pure UI components they already had other UI

libraries they could use. The HISP Tanzania team had also developed the “Seed app”, which

www.manaraa.com

 65

provided a lot of the same features as the App platform. In other words, much of what the new

resources provided was already somewhat covered by local resources.

Missing out on Resources

As mentioned in section 6.2, the two implementation-specialist groups have developed many

resources to support their effort in developing custom applications for DHIS2. Most of these

resources are specific to Angular. A consequence of the local resources being in Angular is

that the developers would not be able to utilize their own resources if they were using the new

resources provided by the core team. For example, it would not be possible for the HISP

Tanzania developers to start with their Seed app and use the UI components from the Design

System when making an application, as the frameworks were incompatible. Many of the

resources the developers at the two implementation-specialist groups used were related to

functionality, rather than UI. Even though the App platform provides a lot of functionality,

the implementation-specialist groups had also made libraries to support more case-specific

functionality. An example of this was an interactive visualizer developed by the HISP

Tanzania developers, which they had made because DHIS2 only provided static visualizers.

In other words, due to the frameworks being different, many of the resources developed

globally and locally are incompatible with each other. By utilizing the new resources, they

would miss out on many of their own resources’ features. This would leave the development

of applications with an unfilled gap, which they would need new solutions or resources to fill.

This challenge was particularly evident for the HISP Tanzania developers. They had not only

developed a range of resources for themselves, but many of their resources were also

developed for or used by external implementation-specialist groups and app developers for

DHIS2. If they were to discontinue the support for their libraries, it would not only affect their

custom applications, but also many other custom applications.

www.manaraa.com

 66

Skepticism toward the New Resources

The developers at HISP India were in general a bit frustrated with the communication from

the core team regarding the changes and new resources that were coming. The HISP India

developers were concerned that if they started using React, the core team might later switch

over to something else like the core team had done when moving many of the bundled

applications from Angular to React. They were questioning if the core team now was actually

committed to the Design System and App platform, as they now would discontinue support

for the d2-ui, a resource which they had utilized quite a lot. They were also concerned about

the Design System and App platform's reliability, and whether it had been thoroughly tested

before it was released.

Older Versions of DHIS2

As mentioned, many of the DHIS2 instances HISP India have implemented and maintain are

quite old versions of DHIS2. Due to both budgets and bureaucracy, it could take the HISP

India team up to 1.5 years to upgrade to a newer version. They first had to get approval and

funding, and then do the necessary changes in the new version of the implementation, such as

customizing parts of the core to get a required security certificate. As the core team releases

new versions every half year and only supports the three last versions, they would “fall

behind” very fast. Another reason both implementation-specialist groups expressed was a

challenge with upgrading, was that by doing so the UI in for example bundled applications

tended to change a bit. Changes in the UI could become quite expensive, as this would often

result in the need for retraining many of the end-users. These factors made upgrading both

challenging, and sometimes also undesirable.

As the App platform and the Design System was recently developed, it had been developed

with the newest version of DHIS2 in mind. This meant that even if the HISP India developers

wanted to use the App platform and the Design System, it would not even be possible in many

of the instances they were working on, as the versions were too old.

www.manaraa.com

 67

Clients Do Not See the Value

Another challenge was that both upgrading and rewriting applications was decided by the

client. The HISP India team could recommend and try to persuade the client, but in the end, it

was the client’s decision. As mentioned in the last section, upgrading could often have

widespread consequences, such as the need for retraining users. This would be costly for the

client, who often did not see the need for upgrading in the first place. For the HISP India

developers to utilize the new resources, they would not only have to rewrite the many custom

applications and learn React framework, they would also have to upgrade their versions.

Investing in upgrading the version would be necessary to utilize the new resources, as the new

resources were not supported by the older versions. Both upgrading the version and rewriting

existing custom applications would be a very costly affair for the client. As most of their

clients have limited technical knowledge, they would not see the value of doing this transition

and would most likely not be willing to pay for it to be done.

6.1.3 Summary of Analysis

As mentioned in earlier sections, the Design System and the App platform have some traits

that the two implementation-specialist groups desire and need. However, as presented, there

are also many challenges related to the new resources fit within the two implementation-

specialist groups. The challenges are summarized in Table 5.

www.manaraa.com

 68

Table 5: Challenges with the new resources' fit with the implementation-specialist groups.

Challenge HISP India HISP Tanzania

Developers skillset Use and know Angular framework.

Do not have the time or resources

to invest in learning React.

Use and know Angular framework.

Do not want to be “forced” to use

other frameworks.

Existing apps About all of their existing apps are

developed in Angular. To utilize

the new resources all applications

would need to be rewritten.

About all of their existing apps are

developed in Angular. To utilize the

new resources all applications would

need to be rewritten.

Overlapping

resources

Many of the resources they already

know and use, partly overlap with

the new resources.

Do not have the time to learn how

to use the new resources, when they

already have something they know.

Many of the resources they already

know and use, partly overlap with

the new resources.

Prefer to use something they already

know.

Missing out on

features because

the new resources

are incompatible

with their own

resources

Would not be able to utilize the

resources they currently do, due to

the frameworks being incompatible.

Would not be able to utilize many of

their own components and libraries if

they are using the new resources, due

to the frameworks being

incompatible.

The versions of the

DHIS2 instances

Have many implementations of

DHIS2 which’s versions are not

compatible with the new resources.

-

Clients do not see

the value

The clients often have limited

technical knowledge and do not see

the value of converting existing

apps over to the App platform and

Design System.

-

www.manaraa.com

 69

7. Discussion
This chapter will start with an overview of the key findings of the analysis. Following this, I

will present what these findings mean for the DHIS2 as a design infrastructure, and I will

propose the terms local design infrastructure and global design infrastructure to elaborate on

the dynamics between implementation-level design, the generic-level design, and the new

boundary resources. These findings will then be discussed with related literature. Through

discussing the empirical findings and related literature, I will answer the research question;

What affects a platform boundary resource’s fit in an implementation-level context?

Following this, I will present the implications the research has in relation to theory, as well as

limitations of the research. In the next chapter, I will propose practical contributions in form

of some considerations enterprise software platform vendors should take into account when

developing new boundary resources.

The empirical findings have shown that there are several challenges related to the DHIS2’s

new resources fit in the two implementation-specialist groups. One of the key obstacles both

the implementation-specialist groups face concerning app development is the buildup of

maintenance obligations and the high cost that follows. This comes in addition to the already

high cost of developing applications. However, the two implementation-specialist groups

have dealt with the challenge of cost in two different ways. HISP Tanzania has taken some

measures to reduce the long-term cost of maintenance and also reduce the short-term cost of

app development by developing their own resources to support this. The resources developed

and used by HISP India address their need for reducing the short-term cost of developing

applications, but not the long-term cost of maintaining them. As mentioned, HISP India

described their custom applications as becoming “uncontrollable”, due to the increasing

amount of custom applications and the maintenance obligations that follow. HISP Tanzania

does not face the same pressing matter, even though they have developed a higher number of

applications. There can be many reasons for this, such as differences in funding, different

scope and scale of projects, and so on. However, parts of the differences are also due to the

differences in the practices and structures. Despite these differences, both the implementation-

specialist groups face many of the same challenges related to the new boundary resources.

www.manaraa.com

 70

The findings highlight some challenges that affect the fit of DHIS2’s new boundary resources

at the implementation level. Table 6 illustrates a more generalized summary of the challenges

with the new boundary resources in the context of the implementation-specialist groups,

which was found in the analysis.

Table 6: Challenges that affect the fit of new boundary resources at the implementation-level.

Fit related to Challenge Explanation

Capacity Developers existing

skillset

Existing skillset not compatible with the

new resources.

Resources and capacity to

acquire new skills

Do not have the resources and capacity to

acquire the new skills needed to utilize the

new resources.

Existing

structures and

resources

Existing app development

framework used in

implementations

Existing implementations of apps are not

compatible with resources in the design

infrastructure, such as the apps having

different app development framework that

is incompatible with the new boundary

resources framework.

Existing implemented

versions of the enterprise

software

The new boundary resources are not

supported by older versions of the

software, and as many of the implemented

instances have old software versions the

implementations are incompatible with the

new boundary resources.

Existing app development

resources

Resources utilized in current practices are

not compatible with the new resources.

The findings have shown that introducing new boundary resources to an implementation-level

context is not a straightforward process. The challenges relate both to the technological and

social aspects. Technological in relation to existing structures, such as existing custom apps

and the frameworks used, the versions of the enterprise software, and app development

resources. It also relates to social aspects, such as the developer’s skillset and their possibility

of acquiring new skills. I will elaborate on each of these challenges in relation to literature

www.manaraa.com

 71

and in section 7.3. Before doing so, I will elaborate on what this means for the DHIS2 Design

infrastructure.

7.1 Enterprise Software and Boundary Resources as a Design

Infrastructure

The challenges identified relate to the structures and people’s capacity that exist

implementation-level context and practices during implementation-level design. These are all

a part of the DHIS2 design infrastructure, as the design infrastructures cover all activities and

arrangements surrounding the system (Li & Nielsen, 2019). However, it can be useful to

distinguish between where the resources and design that may enable design, comes from

within the design infrastructure to understand the dynamics. Elaborating further on the

concept proposed by Li and Nielsen (2019) on design infrastructures, it can be argued that the

two implementation-specialist groups have over time developed their own local design

infrastructures, consisting of many resources, structures, and practices that they draw upon in

implementation-level design of the enterprise software DHIS2. It can thus be said that

implementation-level design is a process that happens within the local design infrastructure

and that it is a process that utilizes the resources from within the local design infrastructure.

The local design infrastructure can be seen as a part of the global design infrastructure. The

processes of generic-level design that the core team do, such as development of new boundary

resources, takes place within the global design infrastructure. It can be argued that the local

design infrastructure has been developed to compensate for what is lacking in what is

provided by the core team.

Further, it can also be argued that the two implementation-specialist groups have different

practices, capacity, and resources, and hence, different local design infrastructures. The

findings also show that the local design infrastructures must be seen in relation to both the

global design infrastructure as well as other local design infrastructures. As mentioned, the

local design infrastructure draws on practices and resources from many other sources besides

what is provided by the global design infrastructure, such as resources from other local design

infrastructures, structures and resources they have themselves developed, and also external

resources provided by parties not related to the enterprise software, such as generic UI

www.manaraa.com

 72

libraries. However, the findings also show that parts of the local design infrastructure can

“move out” from the specific local design infrastructure into the more widely accessible

global design infrastructure. For example, HISP Tanzania had developed many generic

applications that had been published to the DHIS2 online store, as mentioned in Section 5.2.

These applications are developed within a local design infrastructure, but the global design

infrastructure facilitates and supports the sharing of the applications. Hence, these

applications become more accessible to everyone within the global design infrastructure.

Another example is how the HISP India team organized academies held for other DHIS2

complementors and implementation-specialist groups to strengthen capacity, where the

academies were in cooperation with and facilitated by the core team. Besides this, the

implementation-specialist groups were also sharing resources from their local design

infrastructure more directly to other local design infrastructures, such as sharing existing

custom applications that had not been published in the online store. Even though the local

design infrastructure is a part of the global design infrastructure and have many shared

resources, practices, and structures, a differentiation between the two can be useful to describe

the dynamics of how resources, practices, capacity, structures, and other arrangements may

influence each other, be shared, or how they co-exist and respond differently when the local

design infrastructures do not fit with resources and structures provided by the core team. The

relation between the global and the local design infrastructures can thus be illustrated as seen

in Figure 18.

Figure 18: Dynamics between the global and local design infrastructures.

Therefore, in order to properly understand how the new boundary resources’ fit on

implementation-level, it must be seen in relation to both the DHIS2 global design

www.manaraa.com

 73

infrastructure as a whole and the specific local design infrastructure, as illustrated in Figure

19. As other app developers for DHIS2 might have other local design infrastructures, the

DHIS2 new boundary resources might have a better fit in other organizations, and it might

also pose other challenges.

Figure 19: Relation between the Global design infrastructure and the Local design

infrastructure.

7.2 Challenges of the Boundary Resources’ fit with the Local Design

Infrastructure

Many of the challenges found associated with the introduction of new boundary resources can

be ascribed to the boundary resources being incompatible with the local design infrastructure.

I will now discuss how these challenges relate to other literature.

7.2.1 Fit Related to Capacity

It was found that many of the developers in implementation-specialist groups did not have the

skills to utilize the new boundary resources, and it was found challenging for the developers

to get the resources and capacity needed to acquire these skills. Literature has argued that

www.manaraa.com

 74

platform architectures inherently pose “knowledge boundaries” as that platform

complementors must know how to access and extend the platform (Foerderer et al., 2019), the

empirical findings supports this claim. The empirical findings suggest that the knowledge

boundary can even extend beyond this scope. The two implementation-specialist groups did

have the skills and capacity to develop applications for the platform, which they had already

done so many times before. However, they did not have the skills and capacity to utilize the

new boundary resources, that were provided to better support the development of

applications. In other words, knowledge of the software itself is not necessarily enough to

efficiently extend the software, resources aimed at supporting these activities can also pose

knowledge boundaries. The findings show that the implementation-specialist groups cannot

utilize the new boundary resources unless they acquire new skills that can make it possible for

them to leverage the new boundary resources. Acquiring new programming skills can take a

lot of time. This would be a burden for the implementation-specialist groups, as time spent on

acquiring the new skills could have been spent on other, and perhaps more pressing, tasks.

This can be a time-intensive task, and thus, comes with a quite high cost. Developing custom

applications has previously been identified in literature within implementation-level design as

a time- and competence-intensive task (Li & Nielsen, 2019). However, elaborating further on

these findings, a related challenge can be the cost in the time needed to acquire the

competence necessary to utilize the platform boundary resources. The empirical data indicates

that more competence, or advance competence, is needed within the implementation-

specialist groups for them to be able to utilize the new boundary resources. Hence, the more

competence needed, the greater the barrier seems to be.

The findings also show that knowledge boundaries must not only be seen in relation to the

boundary resources and the complementors capacity, but also to the complementors ability to

acquire the more fundamental skills needed to utilize technology that supports the boundary

resources. For the resources to support app development in this context, these knowledge

barriers, or misalignment in the organizations’ capacity and skills to utilize the resources,

must be addressed (Foerderer et al., 2019). It has been suggested that more interactions

between the platform vendor and the complementors is an approach to build competence

around app development and to address the knowledge boundaries (Bianco et al., 2014;

Foerderer et al., 2019). There are several approaches that has been found viable and beneficial

to address knowledge boundaries, but that are not currently present in the existing DHIS2

www.manaraa.com

 75

design infrastructure or that can be strengthened in the DHIS2 design infrastructure, such as

hackathons, live chats or help desks, example code, hosted developer sandbox (developer

testing environments), and alignment workshops (Bianco et al., 2014; Foerderer et al., 2019).

The empirical findings have shown that the implementation-specialist groups have quite good

insight into many of the domains to which they create solutions as well as the technical

aspects of the enterprise software. Decreasing the knowledge boundaries could also be an

efficient approach to bridging the needed context-specific information with the generic

enterprise software, and thus to create more feasible and desirable solutions (von Hippel,

2005). However, even if the knowledge boundaries are addressed, the boundary resources fit

is not straightforward due to the existing implementations and resources, which will be

elaborated on in the following section.

7.2.2 Fit Related to Structure

Existing Implementations

The implementation-specialist groups existing implementations of applications are not

compatible with the app framework the new boundary resources supported. This posed a

challenge for the implementation-specialist groups as they would not be able to utilize the

new boundary resources without putting in a lot of effort and rewriting their existing apps

over to another app development framework. The implementation-specialist groups argued

that they had adapted their solutions to previously provided boundary resources and bundled

applications. It was the core development team that changed the app framework, and thus,

caused this challenging misalignment.

Previous research has argued that the platform vendors balance flexibility and stability by

providing a stable platform core, and flexibility by allowing complementors to extend the

software (de Reuver et al., 2018; Tilson et al., 2010). It has been argued that the boundary

resources enable this flexibility and stability (Tilson et al., 2010). However, other researchers

have stressed the importance of stability in boundary resources (Bianco et al., 2014). The

findings in this research strengthens these findings, as the case has shown that the

implementation-specialist groups do not only adapt to the stable core, but also to the boundary

resources provided by the platform vendor. It has shown that if the new boundary resources

are too different from previously provided resources and structures, it might not be viable

www.manaraa.com

 76

resources for the implementation-specialist groups. Thus, to address this challenge, the

platform vendor should aim at providing stable boundary resources in addition to a stable

core, to serve as a solid foundation for growth (Bianco et al., 2014).

Existing Resources

As previously mentioned, the implementation-specialist groups have developed and evolved

their own resources over time, through a process of self-sourcing (Ghazawneh & Henfridsson,

2013). Research has had a limited focus on the “receiving” end of boundary resources (Eaton

et al., 2015). This case has highlighted the practices and challenges the platforms new

boundary resources pose for the implementation-specialists group. It has shown that the

complementors are not passive receiving parties of the boundary resources provided by the

core team, but rather supports previous research that has argued that complementors actively

assess and shape the resources (Eaton et al., 2015). Not only are the boundary resources

enabling creations of applications to the software, but they are also utilized in the

implementation-level context to develop new resources. Ghazawneh and Henfridsson (2013)

argue that this self-resourcing is a response to the perceived limitations in the existing

boundary resources. The findings in this case suggests that there are several other mechanisms

and reasons for why the implementation-specialist groups develop and use their own

resources besides the perceived limitations in the existing boundary resources. Part of the

reasons is that it is more efficient in short-term for complementors to use resources that they

have the skills and capacity to use, as the new resources pose knowledge boundaries that must

be addressed before they can be utilized (Foerderer et al., 2019). Another reason is if the

boundary resources are not compatible with the established structures and practices, which

makes the resources less desirable. The implementation-specialist groups had developed a

range of resources to support their own app development practices in addition to the resources

based on the platform’s boundary resources. The implementation-specialist groups had also

developed several app resources based on other sources, such as the platforms bundled

applications, external UI component libraries, and existing applications from other

complementors. The reasons for, and sources of, self-sourcing are summarized in Table 7.

www.manaraa.com

 77

Table 7: Reasons for self-sourcing, and sources of self-sourcing found in the implementation-
specialist groups.

Reasons for self-

resourcing

• Perceived limitations in the existing boundary resources

(Ghazawneh & Henfridsson, 2013).

• Easier to use self-developed resources than the boundary

resources.

• Boundary resources are not compatible with existing

structures, practices, and skills.

• New boundary resources being incompatible to previously

provided boundary resources.

Sources of self-

resourcing

• The DHIS2’s previously provided boundary resources.

• Existing structures in the design infrastructure, e.g.

bundled applications.

• Existing structures from other complementors to the

platform, e.g. applications developed by third parties.

• Their own existing structures e.g. previously developed

custom applications.

• Sources outside of the platforms design infrastructure, e.g.

UI component libraries.

It has been argued that self-sourcing is often aimed at achieving goals that might be

conflicting with the platform vendors goals, and thus limited by the boundary resources

(Eaton et al., 2015; Ghazawneh & Henfridsson, 2013). Both the DHIS2 core team and the

implementation-specialist groups share a common overarching goal of strengthening health.

Even though the implementation-specialist groups also do implementations for other domains,

this is neither conflicting nor competing with the platform vendors goals, who are aimed at

developing an enterprise software platform as a public good. The boundary resources

provided by the core team are not aimed at controlling or limiting the platform

complementors from doing any particular things. Thus, this case shows that self-sourcing also

happens also in the context where the platform vendor and the complementors do not have

conflicting or competing goals. This provides a basis to broaden the understanding of

boundary resourcing, besides its relation to platform securing (Ghazawneh & Henfridsson,

2013).

www.manaraa.com

 78

Boundary resources and the concept of self-sourcing also provides a further understanding of

the relationship and dynamics between the boundary resources provided by the platform

vendor and the implementation-level context, as well as a better understanding of how the

receiving end of boundary resources utilize the boundary resources and other resources to

strengthen their internal development of applications. Thus, it also contributes to further the

understanding of platform governance dynamics.

7.3 Contributions

The investigation of an enterprise software platform’s boundary resources fit in an

implementation-level context, has contributed to the research field in four ways. I have

proposed the perspective of a local design infrastructure that is a part of the broader global

design infrastructure, and that this differentiation is useful to understand the dynamics of

what is going on between implementation-level contexts and the enterprise software platform

vendor. The findings have contributed to a further understanding of how the platform

architectures inherently pose knowledge boundaries (Foerderer et al., 2019). Furthermore, it

has provided insight into the challenges posed by changing the technology around boundary

resources, and the how platforms vendors must balance the paradoxical relationship between

stability and flexibility, also in relation to the boundary resources (Bianco et al., 2014; Tilson

et al., 2010). Lastly, the research has contributed to a nuanced understanding of reasons for

why self-sourcing among platform complementors happen (Eaton et al., 2015; Ghazawneh &

Henfridsson, 2013), and that self-sourcing also happens in a context where the platform

vendor and the complementors have non-conflicting goals.

7.4 Limitations

The research was carried out through a non-interventionist approach, as this gained insight

into the articulated and observed experiences of the research participants. A more

interventionist approach, such as Action Research, could have provided more practical

insight. As the research was qualitative and with an interpretivist approach, my subjectivity as

a researcher and a developer has also influenced the findings. However, without a background

as a developer and technical insight, it would have been difficult to understand much of the

www.manaraa.com

 79

findings and the context. Due to the limited scope and time, it was not possible either to study

how the implementation-specialist groups had developed their own local design

infrastructures. Other insights into app development practices could have been gained by

following a development of specific application. However, due to the interest in the new

boundary resources and how they could potentially support future app development, the focus

was to get a more overall perspective on the practices and challenges in app development

within the implementation-specialist groups.

www.manaraa.com

 80

8. Conclusion
Based on a two-year case study with research conducted within three different contexts, this

thesis has discussed the technical and organizational challenges of introducing new boundary

resources for an enterprise software platform into an implementation-level context.

The research has shown that the fit of boundary resources needs to be seen in a socio-

technical perspective, as the resources need to fit with both technology (existing structures

and existing resources), as well as in relation to the implementation-level contexts’ capacity

and existing practices. To understand and elaborate this, the perspective of local design

infrastructures has been proposed to describe the various co-existing structures, resources,

practices, and activities that happen within the global design infrastructure, as well as the

dynamics between the implementation-level design and generic-level design.

The development of custom applications at the implementation-level has been found to be

highly undesirable for the implementation-specialist groups due to the high short-term and

long-term costs. Yet, when implementing enterprise software, custom applications are often

needed to meet the needs and practices of the user. It is found that during the implementation

of custom applications, the developers utilize a wide range of resources. Many of the

resources are introduced to the global design infrastructure by the core team, but there are also

many resources that have evolve from within the local design infrastructure. The local design

infrastructures have evolved over many implementation projects, and over a long period. In

other words, it can be argued that this local design infrastructure has been developed to bridge

the gap where the global design infrastructure is insufficient. Due to this, it can be very

challenging to introduce new boundary resources into this implementation-level context,

especially if there are misfits between the boundary resources and the local design

infrastructure. In other words, to make a global design infrastructure that supports

implementation-level custom app development for enterprise software, the global design

infrastructure and local design infrastructure should aim at aligning.

www.manaraa.com

 81

Practical contributions

When evolving a global design infrastructure, by for example adding new boundary

resources, this should be based on, and be compatible with, what is already in the global

design infrastructure. Too big changes can lead to complementors utilizing less of the

resources provided by the generic-level, and rather expand their local design infrastructure

with other resources that are compatible with their existing structures, practices, and

implementations. Thus, the research provides a basis to elaborate on important aspects when

introducing new platform resources into a design infrastructure' (for them to fit with the local

implementation context):

• Technical resources should be as detached, or as loosely coupled, from dependencies

as possible. E.g. aim at avoiding being framework specific.

• The resources in the design infrastructure should aim at being stable, yet with the

possibility to evolve to cover new needs.

o New resources should aim at being compatible with the existing resources,

practices, and structures in the global design infrastructure.

• New resources should be coupled with documentation, tutorials, and/or examples that

can equip people with the skills needed to utilize the resources. E.g. the DHIS2 App

platform and the Design System should be coupled with tutorials on how to learn

React.

• Resources should aim at removing as much of the cost (e.g. cost of development and

maintenance) from the implementation-level and place these on the software

enterprise platform vendor.

• Generic-level design should also aim at mechanisms within the global design

infrastructure that allows sharing of the resources developed by the implementation-

specialist groups.

These aspects can potentially better align the global design infrastructure with the local design

infrastructures, and better strengthen and support the work of the implementation-specialist

groups.

www.manaraa.com

 82

Future research

The findings in this thesis also provide a basis for several interesting research topics. Firstly,

as this research illustrates how it is difficult to introduce new boundary resources into an

implementation-level context, it would be interesting to elaborate on how implementation-

level contexts actively adapt to boundary resources over time, and how they come to use them

or create other solutions. For example, follow-up research in the future of this study would be

interesting to see if and how the new boundary resources can become a better fit.

As this research shows, there is a misalignment between the global and the local design

infrastructures. Future research should investigate further the dynamics between the global

and the local design infrastructures and investigate how to better align these design

infrastructures.

This research has also shown that there are differences in how the two implementation-

specialist group’s local design infrastructures have emerged and how they evolve. Even

though the two groups have quite similar projects and clients, they have addressed the

challenges related to app development differently. To understand the reasons for why and how

the design infrastructures have become different, further research is needed.

Hopefully, this research can contribute to how enterprise software platform vendors develop

resources intended to strengthen the work of the enterprise software complementors, and that

this can make the complementors work easier.

www.manaraa.com

 83

9. References
 Baldwin, C. Y., & Woodard, C. J. (2009). The Architecture of Platforms: A Unified View. In

Platforms, Markets and Innovation (pp. 19–44). Edward Elgar Publishing.

https://doi.org/10.4337/9781849803311

Bansler, J., & Havn, E. (1994). Information systems development with generic systems. 707–

718.

Berente, N., Lyytinen, K., Yoo, Y., & Maurer, C. (2019). Institutional logics and pluralistic

responses to enterprise system implementation: A qualitative meta-analysis. MIS

Quarterly, 43(3), 873–902. https://doi.org/10.25300/MISQ/2019/14214

Bianco, V. D., Myllärniemi, V., Komssi, M., & Raatikainen, M. (2014). The Role of Platform

Boundary Resources in Software Ecosystems: A Case Study. 2014 IEEE/IFIP

Conference on Software Architecture, 11–20. https://doi.org/10.1109/WICSA.2014.41

Braa, J., Monteiro, E., & Sahay, S. (2004). Networks of Action: Sustainable Health

Information Systems across Developing Countries. MIS Quarterly, 28(3), 337–362.

JSTOR. https://doi.org/10.2307/25148643

Braa, J., & Sahay, S. (2017). The DHIS2 Open Source Software Platform: Evolution Over

Time and Space. The MIT Press.

https://www.researchgate.net/publication/316619278_The_DHIS2_Open_Source_Soft

ware_Platform_Evolution_Over_Time_and_Space

Brehm, L., Heinzl, A., & Markus, M. L. (2001). Tailoring ERP systems: A spectrum of

choices and their implications. Proceedings of the 34th Annual Hawaii International

Conference on System Sciences, 9 pp.-. https://doi.org/10.1109/HICSS.2001.927130

de Reuver, M., Sørensen, C., & Basole, R. C. (2018). The Digital Platform: A Research

Agenda. Journal of Information Technology, 33(2), 124–135.

https://doi.org/10.1057/s41265-016-0033-3

www.manaraa.com

 84

Dean, J. C., Dr, C., & Vigder, M. R. (2002). System Implementation Using Commercial Off-

The-Shelf Software.

DHIS2 design lab. (n.d.). Retrieved June 9, 2020, from

https://www.mn.uio.no/ifi/english/research/networks/hisp/dhis2-design-lab/index.html

DHIS2 front page. (n.d.). Retrieved May 19, 2020, from https://www.dhis2.org/

Dittrich, Y. (2014). Software engineering beyond the project – Sustaining software

ecosystems. Information and Software Technology, 56(11), 1436–1456.

https://doi.org/10.1016/j.infsof.2014.02.012

Domingos, H. J. L., Martins, J. A. L., & Tecnologia, F. C. (1997). Coordination and

Tailorability Issues in the design of a Generic Large Scale Groupware Platform.

Eaton, B., Elaluf-Calderwood, S., Sorensen, C., & Yoo, Y. (2015). Distributed tuning of

boundary resources: The case of Apple’s iOS service system. MIS Quarterly:

Management Information Systems, 39(1), 217–243.

Foerderer, J., Kude, T., Schuetz, S. W., & Heinzl, A. (2019). Knowledge boundaries in

enterprise software platform development: Antecedents and consequences for platform

governance. Information Systems Journal, 29(1), 119–144.

https://doi.org/10.1111/isj.12186

Gawer, A., & Cusumano, M. A. (2014). Industry Platforms and Ecosystem Innovation.

Journal of Product Innovation Management, 31(3), 417–433.

https://doi.org/10.1111/jpim.12105

Geertz, C. (1973). “Thick Description: Toward an Interpretive Theory of Culture.” The

Cultural Geography Reader; Routledge. https://doi.org/10.4324/9780203931950-11

Ghazawneh, A., & Henfridsson, O. (2013). Balancing platform control and external

contribution in third-party development: The boundary resources model. Information

Systems Journal, 23(2), 173–192. https://doi.org/10.1111/j.1365-2575.2012.00406.x

www.manaraa.com

 85

Gizaw, A. A., Bygstad, B., & Nielsen, P. (2017). Open generification. Information Systems

Journal, 27(5), 619–642. https://doi.org/10.1111/isj.12112

Health Information Systems Programme (HISP). (n.d.). Retrieved May 19, 2020, from

https://www.mn.uio.no/ifi/english/research/networks/hisp/

Henfridsson, O., & Bygstad, B. (2013). The Generative Mechanisms of Digital Infrastructure

Evolution. MIS Quarterly, 37(3), 907–931. JSTOR.

HISP India. (n.d.-a). About Us. Retrieved April 2, 2020, from

https://hispindia.org/Pages/About_Us/About_Us.html

HISP India. (n.d.-b). Our work: By Region. Retrieved May 22, 2020, from

https://hispindia.org/Pages/By%20Region/By%20Region.html

HISP India. (n.d.-c). Services. Retrieved May 22, 2020, from

https://hispindia.org/Pages/Services/Services.html

HISP Tanzania. (n.d.). About us: HISP Tanzania. Retrieved May 23, 2020, from

https://hisptanzania.org/#/about-us

Klein, H. K., & Myers, M. D. (1999). A Set of Principles for Conducting and Evaluating

Interpretive Field Studies in Information Systems. MIS Quarterly, 23(1), 67–93.

JSTOR. https://doi.org/10.2307/249410

Li, M. (2019a). An Approach to Addressing the Usability and Local Relevance of Generic

Enterprise Software. Association for Information Systems, 10, 17.

Li, M. (2019b). Making Usable Generic Software—The Platform Appliances Approach.

https://doi.org/10.13140/RG.2.2.11381.83687

Li, M., & Nielsen, P. (2019). Making Usable Generic Software. A Matter of Global or Local

Design? 18.

MacLean, A., Carter, K., Lövstrand, L., & Moran, T. (1990). User-tailorable systems:

Pressing the issues with buttons. Proceedings of the SIGCHI Conference on Human

www.manaraa.com

 86

Factors in Computing Systems Empowering People - CHI ’90, 175–182.

https://doi.org/10.1145/97243.97271

Martin, S. (n.d.). Angular vs React vs Vue: Which is the Best Choice for 2019? | Hacker

Noon. Retrieved May 19, 2020, from https://hackernoon.com/angular-vs-react-vs-vue-

which-is-the-best-choice-for-2019-16ce0deb3847

McKenzie, H. (2013, July 23). Move fast, break things: The sad story of Platform,

Facebook’s gigantic missed opportunity. Pando. https://pando.com/2013/07/23/move-

fast-break-things-the-sad-story-of-platform-facebooks-gigantic-missed-opportunity/

Pollock, N., Williams, R., & D’Adderio, L. (2007). Global Software and its Provenance:

Generification Work in the Production of Organizational Software Packages. Social

Studies of Science, 37(2), 254–280. https://doi.org/10.1177/0306312706066022

Robbes, R., & Lungu, M. (2011). A study of ripple effects in software ecosystems (NIER

track). Proceedings of the 33rd International Conference on Software Engineering,

904–907. https://doi.org/10.1145/1985793.1985940

Roland, L. K., Sanner, T. A., Sæbø, J. I., & Monteiro, E. (2017). P for Platform. Architectures

of large-scale participatory design. 3-34. https://ntnuopen.ntnu.no/ntnu-

xmlui/handle/11250/2478234

Sia, S. K., & Soh, C. (2007). An assessment of package–organisation misalignment:

Institutional and ontological structures. European Journal of Information Systems,

16(5), 568–583. https://doi.org/10.1057/palgrave.ejis.3000700

Soh, C., & Sia, S. (2008). The Challenges of Implementing “Vanilla” Versions of Enterprise

Systems. MIS Quarterly Executive, 4(3). https://aisel.aisnet.org/misqe/vol4/iss3/6

Susman, G. I., & Evered, R. D. (1978). An Assessment of the Scientific Merits of Action

Research. Administrative Science Quarterly, 23(4), 582–603. JSTOR.

https://doi.org/10.2307/2392581

www.manaraa.com

 87

Tilson, D., Lyytinen, K., & Sørensen, C. (2010). Digital Infrastructures: The Missing IS

Research Agenda. Information Systems Research, 21(4), 748–759.

https://doi.org/10.1287/isre.1100.0318

Tiwana, A. (2014). Platform Architecture. In Platform Ecosystems (pp. 73–116). Elsevier.

https://doi.org/10.1016/B978-0-12-408066-9.00005-9

Villiers, R. (2012). Models for interpretive information systems research, part 2: Design

research, development research, design-science research, and design-based research

- a meta-study and examples. 238–255. https://doi.org/10.4018/978-1-4666-0179-

6.ch012

von Hippel, E. (2005). Democratizing innovation: The evolving phenomenon of user

innovation. Journal Für Betriebswirtschaft, 55(1), 63–78.

https://doi.org/10.1007/s11301-004-0002-8

von Hippel, E., & Katz, R. (2002). Shifting Innovation to Users via Toolkits. Management

Science, 48(7), 821–833. JSTOR.

Walsham, G. (2006). Doing interpretive research. European Journal of Information Systems,

15(3), 320–330. https://doi.org/10.1057/palgrave.ejis.3000589

Wareham, J., Fox, P. B., & Cano Giner, J. L. (2014). Technology Ecosystem Governance.

Organization Science, 25(4), 1195–1215. https://doi.org/10.1287/orsc.2014.0895

Yazan, B. (2015). Three Approaches to Case Study Methods in Education: Yin, Merriam, and

Stake. The Qualitative Report; Fort Lauderdale, 20(2), 134–152.

Zahle, J. (2019). Data, epistemic values, and multiple methods in case study research. Studies

in History and Philosophy of Science Part A, 78, 32–39.

https://doi.org/10.1016/j.shpsa.2018.11.005

